Software Visualizations

Rolf Biehn

What is Software

Visualization?
» Visualization of a software systems based on their
structure, history, or behavior
» Today’s presentation:
Program Execution Traces
Source Code History
Program Optimization

Execution Patterns in
Object-Oriented
Visualization

3> David Lorenz et al.

What is it?

» Techniques to visualize the execution flow and
execution patterns
» Input is call traces from instrumented code

Motivation

» Understand program execution flow in order to
program or debug it

UML Visualization

c

UML Discussion

+Scales better than directed graphs
-Vertical Space is consumed quickly
-Somewhat difficult to read

UML Visualization

A B c D

>
i
[o]
UML

UML Call Graph
Tree
. . . * * e e I 2 t
Execution Pattern Discussion I I —— nextQ
&)) & memnconst 5 | mored)
+Easier to read than an UML diagram (no “bouncing Figure % Schematic view of flattening] cur() >
between axis”) — = — = - 1 >_| updateObserver() N~ |
+Horizontal & Vertical space is used more efficiently I I ~ 4edaterObservables) o S next()
+Enables better user interaction B o) o) & | pesin 5 more()
Figure 10: Schematic view of underlaying > cur() =
Flattening is useful for System libraries o 5__1 updateObserver() N “-
*Can collapse and expand nodes Cfumiednst s |
*Can §earch & flltgr (with expressions) « 3D box indicates a collapsed node
*Panning & Zooming also supported
« Colors correspond to a class
. . . . i #s represent identity of the object
A A S M
next R .
0 » How to detect pattern? Evaluation
more() »
cur() » » Bunch of dimension: » Understand program execution flow in order to CVSscan: Visualization
updateObserver() : Identity, Class Identity, Message Structure, Depth program or debug it -
= > I Limiting, Repetition, Polymorphism, Associatively, (B) Looks like it should work, if implemented carefully Of Code Evolution

« 3D box used to show pattern

» Saves lots of space in call traces

« Can expand/contract

* Number (6X) shows number of repetitions
« Also applies to recursion

Commutatively
» Create a hash function for each leaf node which
considers these dimensions
» Create a recursive hash function which considers
its children in the call graph
» Put all nodes into a dictionary
» How long does it take? Memory concerns?

How to navigate from high-level if | don’t know precisely

what | want to see?

What about multi-threading?

How well does it scale? What if number of Classes
exceeds distinguishable colours?

> Alex Telea, et al.

What is it?

» CVSScan is part of a larger suite of tools called
Visual Code Navigator

» Provides information of the history of check-ins

AN\

Motivation

» Answer the following questions
Who performed these modifications of the code
Which parts of the code are unstable?
How are changes correlated?
How are the development tasks distributed?
What is the context in which a piece of code appeared?

Dimensions to Show

» All encoded using colors
Author
Content (block, comment, references)
Evolution (add/remove/delete/unchanged)

Global Line Position

version Vs

S0 int B = 3 m
giinc 3 = 2; | Line position

in file

.| Global line

position

Figure 2 Global line position and corresponding graph
analogy

Global Line Position (2)

Legend

I Constant line -} New lines

Discrete time (versions)

Discrete time (versions)

Lines to be

inserted

Local Line Position Global Line Position
a) b)

Global Line Position allows Left
to Right reading

Multiple Views

metric
vie

metric
view

code view

Figure 9: Multiple code views in CVSscan

/
WiTRstctes (HFC pamid

| : \

3 sieg shected n
Tia_mp_ELIeCiETonaaR) 1€ Te377T

Figure 11: Two-layered code view

Use Case Validation

» Informal Studies (not targeted)
» 15 minutes of training
» Silent Observer

» Why not use a real-world case? (i.e. trying to fix a
bug)

» No control
» No negative/constructive comments

Use Case #1

» Script file from the FreeBSD

“Here they tuned the regular expressions”
“Apparently a major change took place in the
middle of the project. It mainly affected the
check_version procedure”

» Rated as a success

Use Case #2

» C file socket implementation of the X Transport
service layer

» The user recognized 2 authors performed most of
the changes and the area of heavy modification

» Overall, the user did not have a very clear image
of the file’s evolution

|

Demo

|

Evaluation

» Who performed these modifications of the code?
(E) Hard to Track exactly “who is pink?”

» Which parts of the code are unstable?
(B) Seems o.k. for this purpose

» How are changes correlated?
(F) Correlation to other files in same check-in?
Correlation to other changes in the same file?

Evaluation

» How are the development tasks distributed?

(D) Although we can see distribution, precisely who
wrote what is difficult to figure out

» What is the context in which a piece of code
appeared?
(F) Hard to link back to changelist
Branching history?

|

Visualizing Application
Behavior on Superscalar
Processors

3> Chris Stolte et al.

What is it?

» Program called Rivet
» Help optimization on multi-processor architectures

Motivation

» Optimize
Know where to look
Drill into the details

Know the context — map back to the source code
somehow

|

Main Optimization
Techniques

» Pipelining: overlap the execution of multiple
instructions within a functional unit

» Multiple Functional Units: exploit instruction level
parallelism (ILP)

» Out-of-Order Execution: increase possibility of
ILP

» Speculation: guess and fetch ahead

What the program tracks

» Empty/Icache: An instruction cache miss

» Exception/Flush : An instruction requires
sequential execution

» Load/Store: Waiting for memory

» Issue/Functional Unit: \Waiting for a functional
unit to complete execution

We are able to focus the area of interest to
(©) 200 oyl ~fow sough cyes tht e
for further investigation.

The instruction mix chart lets us see what
(@) types of instructions are in the pipeline
during the time interval of interest.

I osn

There are periods of increased
(2) pipeline stall throughout the
execution

The overview displays stall and
(®) throughput information for the
entire execution.

Dependencies appear as yellow
lines between instructions

Ifan instruction is speculated,
its border is orange
e
—
—
Fosingoors ﬁ __|
e Instructions ot yet completed
o appear faded in the reorder
ot buffer
‘The instruction which must

graduate nextis indicated by a
yellow border and red arrow

s - 1] -

for (s = 123 8% 0; 5)

= (u-dvfi]) / (ovli 4 ¢ - 1) - vfi]);

]
brals(s + 1] = bvals(s + 1] + (1 - onega) * brals[s];
bvals(s] = osega * brals(s];

tloat * kv, Long K, float * vl

“The pipelina view shows that there
B (3) aro cascading dependencios between a
© ing point instructions and

ction
the low throughput rogions.

throughput.

Evaluation

» Know where to look.

(B) Great use of overview-plus detail display
But is this really the best entry point?

What about filters?
» Look at the details
(A) Looks good

» Know the context — map back to the source code

somehow
(A) Looks good
Next step link to IDE?

Questions?

