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Papers Covered

Chapter 1, Readings in Information Visualization: Using Vision to Think.
Stuart Card, Jock Mackinlay, and Ben Shneiderman, Morgan Kaufmann
1999.

Polaris: A System for Query, Analysis and Visualization of
Multi-dimensional Relational Databases. Chris Stolte, Diane Tang and
Pat Hanrahan, IEEE TVCG 8(1), January 2002.
[graphics.stanford.edu/papers/polaris]

Low-Level Components of Analytic Activity in Information Visualization.
Robert Amar, James Eagan, and John Stasko. Proc. InfoVis 05.
[www.cc.gatech.edu/ john.stasko/papers/infovis05.pdf]

A Nested Model for Visualization Design and Validation. Tamara
Munzner. IEEE TVCG 15(6) (Proc. InfoVis 2009), to appear.
[www.cs.ubc.ca/labs/imager/tr/2009/NestedModel]

MatrixExplorer: a Dual-Representation System to Explore Social
Networks. Nathalie Henry and Jean-Daniel Fekete. IEEE Trans.
Visualization and Computer Graphics (Proc InfoVis 2006) 12(5), pages
677-684, 2006. [www.aviz.fr/ nhenry/docs/Henry-InfoVis2006.pdf]
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Further Readings

The Structure of the Information Visualization Design Space. Stuart
Card and Jock Mackinlay, Proc. InfoVis 97.
[citeseer.ist.psu.edu/card96structure.html]

Automating the Design of Graphical Presentations of Relational
Information. Jock Mackinlay, ACM Transaction on Graphics, vol. 5, no.
2, April 1986, pp. 110-141.

Semiology of Graphics. Jacques Bertin, Gauthier-Villars 1967, EHESS
1998

The Grammar of Graphics. Leland Wilkinson, Springer-Verlag 1999

Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and
Torsten Möller, Proc. InfoVis 2004, pp. 151-158.

The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. Ben Shneiderman, Proc. 1996 IEEE Visual Languages,
also Maryland HCIL TR 96-13.
[citeseer.ist.psu.edu/shneiderman96eyes.html]
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Visualization Big Picture
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Mapping

input

data semantics
use domain knowledge

output
visual encoding

visual/graphical/perceptual/retinal
channels/attributes/dimensions/variables

use human perception

processing

algorithms
handle computational constraints
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Bertin: Semiology of Graphics

geometric primitives: marks
points, lines, areas, volumes

attributes: visual/retinal variables
parameters control mark appearance
separable channels flowing from retina to brain

x,y

position

z

size
greyscale
color
texture
orientation
shape

[Bertin, Semiology of Graphics, 1967 Gauthier-Villars, 1998 EHESS]
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Design Space = Visual Metaphors

[Bertin, Semiology of Graphics, 1967 Gauthier-Villars, 1998 EHESS]
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Data Types

continuous (quantitative)

10 inches, 17 inches, 23 inches

ordered (ordinal)

small, medium, large
days: Sun, Mon, Tue, ...

categorical (nominal)

apples, oranges, bananas

[graphics.stanford.edu/papers/polaris]
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More Data Types: Stevens

subdivide quantitative further:

interval: 0 location arbitrary

time: seconds, minutes

ratio: 0 fixed

physical measurements: Kelvin temp

[S.S. Stevens, On the theory of scales of measurements, Science 103(2684):677-680, 1946]
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Channel Ranking Varies by Data Type

spatial position best for all types

Position

Texture
Connection
Containment
Lightness

Shape
Length
Angle
Slope
Area
Volume

Position
Length
Angle
Slope
Area
Volume
Lightness

Texture

Containment
Shape

Connection

Saturation

Position
Lightness

Texture
Connection
Containment
Length
Angle
Slope
Area
Volume
Shape

Saturation

Saturation

Hue

Hue

Hue

Quantitative Ordered Categorical

[Mackinlay, Automating the Design of Graphical Presentations of Relational
Information, ACM TOG 5:2, 1986]
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Mackinlay, Card

data variables
1D, 2D, 3D, 4D, 5D, ...

data types
nominal, ordered, quantitative

marks
point, line, area, surface, volume
geometric primitives

retinal properties
size, brightness, color, texture, orientation, shape...
parameters that control the appearance of geometric
primitives
separable channels of information flowing from retina to
brain

closest thing to central dogma we’ve got
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Combinatorics of Encodings

challenge

pick the best encoding from exponential number of
possibilities (n + 1)8

Principle of Consistency

properties of the image should match properties of data

Principle of Importance Ordering

encode most important information in most effective way

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
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Mackinlay’s Criteria

Expressiveness

Set of facts expressible in visual language if sentences
(visualizations) in language express all facts in data, and
only facts in data.

consider the failure cases...

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
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Cannot Express the Facts

A 1 ⇔ N relation cannot be expressed in a single
horizontal dot plot because multiple tuples are mapped to
the same position

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
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Expresses Facts Not in the Data

length interpreted as quantitative value

thus length says something untrue about nominal data

[Mackinlay, APT], [Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
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Mackinlay’s Criteria

Expressiveness

set of facts expressible in visual language if sentences
(visualizations) in language express all facts in data, and
only facts in data.

Effectiveness

a visualization is more effective than another
visualization if information conveyed by one visualization
is more readily perceived than information in other.

subject of the next lecture

[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
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Design: Designer vs. Automatic vs. User

designer: studies last time

automatic: select visualization automatically given data
Mackinlay, APT

limited set of encodings:
scatterplots, bar charts...

Roth et al, Sage/Visage
holy grail: entire space of infovis visual encoding

nowhere near goal, esp. with relational/graph data

human-guided: allow user to change encodings

Polaris: user drag and drop exporation
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Polaris

infovis spreadsheet

table cell

not just numbers: graphical elements
wide range of retinal variables and marks

table algebra ⇔ interactive interface

formal language

influenced by Wilkinson’s Grammar of Graphics

Grammar of Graphics, Springer-Verlag 1999

commercialized as Tableau Software

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional
Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1)
Jan 2002]
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Polaris: Circles, State/Product:Month

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional
Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1)
Jan 2002]
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Polaris: Gantt Bar, Country/Time

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional
Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1)
Jan 2002]
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Polaris: Circles, Lat/Long

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional
Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1)
Jan 2002]
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Polaris: Circles, Profit/State:Months

[Polaris: A System for Query, Analysis and Visualization of Multi-dimensional
Relational Databases. Chris Stolte, Diane Tang and Pat Hanrahan, IEEE TVCG, 8(1)
Jan 2002]
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Fields Create Tables and Graphs

Ordinal fields: interpret field as sequence that partitions
table into rows and columns:

Quarter = (Qtr1),(Qtr2),(Qtr3),(Qtr4) ⇔

Quantitative fields: treat field as single element sequence
and encode as axes:

Profit = (Profit) ⇔

[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]
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Beyond Data Alone

bigger picture than just visual encoding decisions

Shneiderman’s data+task taxonomy
data

1D, 2D, 3D, temporal, nD, trees, networks
text and documents (Hanrahan)

tasks

overview, zoom, filter, details-on-demand,
relate, history, extract

data alone not enough

what do you need to do?

mantra: overview first, zoom and filter, details on
demand

[Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. Proc. 1996 IEEE Visual Languages]
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Tasks, Amar/Eagan/Stasko Taxonomy

low-level tasks

retrieve value, filter, compute derived value,
find extremum, sort, determine range,
characterize distribution, find anomalies,
cluster, correlate

standardized set for better comparison between papers

bottom-up grouping with affinity diagramming
abstraction from domain task down to low-level task

[Amar, Eagan, and John Stasko. Low-Level Components of Analytic
Activity in Information Visualization. Proc. InfoVis 05]
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Control Room Example

Which location has the highest power surge for the given time period?
(extreme y-dimension)

A fault occurred at the beginning of this recording, and resulted in a
temporary power surge. Which location is affected the earliest? (extreme
x-dimension)

Which location has the most number of power surges? (extreme count)

[Overview Use in Multiple Visual Information Resolution Interfaces. Lam, Munzner,
and Kincaid. Proc. InfoVis 2007]
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Data Models vs. Conceptual Models

data model: mathematical abstraction

set with operations
e.g. integers or floats with ∗,+

conceptual model: mental construction

includes semantics, support data
e.g. navigating through city using landmarks

[Hanrahan, graphics.stanford.edu/courses/
cs448b-04-winter/lectures/encoding/walk005.html]

[Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and
Torsten Möller, Proc. InfoVis 2004, pp. 151-158.]
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Models Example

data model

17, 25, -4, 28.6
(floats)

conceptual model

temperature

depending on task, transform to data type
making toast

burned vs. not burned (N)

classifying showers

hot, warm, cold (O)

finding anamolies in local weather patterns

continuous to 4 sig figures (Q)

30 / 44

Models Example

data model

17, 25, -4, 28.6
(floats)

conceptual model

temperature

depending on task, transform to data type
making toast

burned vs. not burned (N)

classifying showers

hot, warm, cold (O)

finding anamolies in local weather patterns

continuous to 4 sig figures (Q)

31 / 44

Models Example

data model

17, 25, -4, 28.6
(floats)

conceptual model

temperature

depending on task, transform to data type
making toast

burned vs. not burned (N)

classifying showers

hot, warm, cold (O)

finding anamolies in local weather patterns

continuous to 4 sig figures (Q)

32 / 44



Time

2D+T vs. 3D
same or different? depends on POV

input side vs. output side

same

input: time as just one kind of abstract input dimension

different

input: semantics (time steps of dynamically changing
data)
output: visual encoding channel of temporal change very
different than spatial position change

processing might be different

e.g. interpolate differently across timesteps than across
spatial position
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Nested Model

separating design into levels

not just the visual encoding level!

1

Separating Design Into Levels

! multiple levels

domain problem characterization

     data/operation abstraction design

  encoding/interaction technique design

algorithm design

! three separate design problems

! not just the encoding level

! each level has unique threats to validity

! evocative language from security via software engineering

! dependencies between levels

! outputs from level above are inputs to level below

! downstream levels required for validating some upstream threats

cascading dependencies: outputs from level above are
inputs to level below

[Munzner. A Nested Model for Visualization Design and Validation. IEEE TVCG 15(6)
(Proc. InfoVis 2009), to appear. www.cs.ubc.ca/labs/imager/tr/2009/NestedModel]
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Nested Levels

characterizing problems

understanding domain concepts, current workflow
find gaps where conjecture that vis would help
MatrixExplorer case study example

abstracting into operations on data types

Amar/Stasko tasks: abstract operation example
MizBee: abstraction on data example

designing encoding and interaction

Bertin, Mackinlay/Card: encoding
later in term: interaction design

creating efficient algorithms

classic CS problem: create algorithm given clear
specification
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Threats To Validity: What Can Go Wrong?

1

Separating Design Into Levels

! multiple levels

domain problem characterization

     data/operation abstraction design

  encoding/interaction technique design

algorithm design

! three separate design problems

! not just the encoding level

! each level has unique threats to validity

! evocative language from security via software engineering

! dependencies between levels

! outputs from level above are inputs to level below

! downstream levels required for validating some upstream threats

wrong problem

they don’t do that

wrong abstraction

you’re showing them the wrong thing

wrong encoding/interaction

the way you show it doesn’t work

wrong algorithm

your code is too slow

[Munzner. A Nested Model for Visualization Design and Validation. IEEE TVCG 15(6)
(Proc. InfoVis 2009), to appear. www.cs.ubc.ca/labs/imager/tr/2009/NestedModel]
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Upstream and Downstream Validation

humans in the loop for outer three levels

threat: wrong problem

 validate: observe and interview target users

     threat: bad data/operation abstraction

          threat: ineffective encoding/interaction technique

          validate: justify encoding/interaction design

              threat: slow algorithm

validate: analyze computational complexity

                      implement system

              validate: measure system time/memory

          validate: qualitative/quantitative result image analysis

          [test on any users, informal usability study]

          validate: lab study, measure human time/errors for operation

      validate: test on target users, collect anecdotal evidence of utility

      validate: field study, document human usage of deployed system

 validate: observe adoption rates

[Munzner. A Nested Model for Visualization Design and Validation. IEEE TVCG 15(6)
(Proc. InfoVis 2009), to appear. www.cs.ubc.ca/labs/imager/tr/2009/NestedModel]
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MatrixExplorer

domain: social network analysis

validation

early: participatory design to generate requirements
later: qualitative observations of tool use by target users

techniques
interactively map attributes to visual variables

user can change visual encoding on the fly (like Polaris)

filtering
selection
sorting by attribute
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Requirements

use multiple representations

handle multiple connected components

provide overviews

display general dataset info

use attributes to create multiple views

display basic and derived attributes

minimize parameter tuning

allow manual finetuning of automatic layout

provide visible reminders of filtered-out data

support multiple clusterings, including manual

support outlier discovery

find where consensus between different clusterings

aggregate, but provide full detail on demand
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Techniques: Dual Views

show both matrix and node-link representations

[Fig 3. Henry and Fekete. MatrixExplorer: a Dual-Representation System to Explore
Social Networks. IEEE TVCG 12(5):677-684 (Proc InfoVis 2006)
www.aviz.fr/ nhenry/docs/Henry-InfoVis2006.pdf]

40 / 44

MatrixExplorer Views

overviews: matrix, node-link, connected components

details: matrix, node-link

controls

[Fig 1. Henry and Fekete. MatrixExplorer: a Dual-Representation System to Explore
Social Networks. IEEE TVCG 12(5):677-684 (Proc InfoVis 2006)
www.aviz.fr/ nhenry/docs/Henry-InfoVis2006.pdf]
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Automatic Clustering/Reordering

automatic clustering as good starting point

then manually refine

[Fig 6. Henry and Fekete. MatrixExplorer: a Dual-Representation System to Explore
Social Networks. IEEE TVCG 12(5):677-684 (Proc InfoVis 2006)]

42 / 44

Comparing Clusters

relayout, check if clusters conserved

encode clusters with different visual variables

colorcode common elements between clusters
[Fig 11. Henry and Fekete. MatrixExplorer: a Dual-Representation System to Explore
Social Networks. IEEE TVCG 12(5):677-684 (Proc InfoVis 2006)]
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Credits

Pat Hanrahan

graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding

Torsten Möller, Melanie Tory

discussions on conceptual models
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