
Rolf Biehn

 Use an Abstract Syntax Tree(AST) and
structurally compare code
◦Reduce noise (such as renamed variables, method

declaration order, etc..)
◦Cross-language comparisons become possible
◦ Better visualizations possible
◦ Improved Navigation

 Created my own (partial) AST model
 AST model serializer/deserializer JAVAXML
 Redefined JAVAXML format slightly

(MethodName, ClassName, VariableName
attributes  name)

 Simple Comparison + manual intervention

 JAVA XML scalability issues (5K Lines of code ->
800K of memory)

 Limited number of AST nodes supported
 Need to redo my AST object model

Method View

Mini-Map

Detailed View

<methodCall name=“mName">
 <meta name="diff" />
 <arguments>
 <var-ref name=“var1" />

 In JAVA this would be “mName(var1);”

<methodCall name=“mName">
 <meta name="diff" />
 <arguments>
 <var-ref name=“var1" />

 We don’t want to Visualize the AST Model.

<methodCall name=“mName">
 <meta name="diff" />
 <arguments>
 <var-ref name=“var1" />

 Therefore, flatten the list.
{ <DIFF>, <“mName”>, </DIFF>, <“(“>, <“var1”>,
<“)”> }

 Markers (Red, Blue, Purple)
 Collapsible (purple – updates both, efficient)
 Left click moves to spot
 ViewMode (anchor, length, current size)
 Page up / down buttons
 %Width
 Locked Mode
 Resize Mode

 The Good
◦Can represent a large number of lines
◦ Interaction is easy once learned

 The Bad
◦Not intuitive?
◦Resize mode needs help

 The Future
◦ Further Optimizations possible
◦User Studies
◦Clean up Interfaces for library re-use

 Mini-Map can be used anywhere with a pixel map
+ line concept (i.e. SeeSoft)

 Not really leveraging AST comparison at this point
 Piece of a puzzle – long road ahead including:
◦ More support of JAVA & C# AST nodes
◦ Better comparison algorithms
◦ Able to compare and visualize classes, packages, etc..
◦ More interaction {filters, go to, multiple views, etc..}

