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Overview

o Direct visualization vs.
dimensionality reduction

o Nonlinear dimensionality reduction
techniques:

ISOMAP, LLE, Charting

o A fun example that uses non-
metric, replicated MDS



Direct visualization

o Visualize all dimensions
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Dimensionality reduction

o Visualize the intrinsic low-dimensional structure
within a high-dimensional data space

o Ideally 2 or 3 dimensions so data can be
displayed with a single scatterplot
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When to use:

o Direct visualization:

Interested in relationships between
attributes (dimensions) of the data

o Dimensionality reduction:

Interested in geometric relationships
between data points



Nonlinear dimensionality reduction

o Isometric mapping (ISOMAP)

Mapping a Manifold of Perceptual Observations.
Joshua B. Tenenbaum. Neural Information
Processing Systems, 1998.

o Locally Linear Embedding (LLE)

Think Globally, Fit Locally: Unsupervised
Learning of Nonlinear Manifolds. Lawrence K.
Saul & Sam T. Roweis. University of
Sgggsylvania Technical Report MS-CIS-02-18,

o Charting

ggggting a Manifold. Matthew Brand, NIPS



Why do we need nonlinear
dimensionality reduction?

Linear DR (PCA, Classic MDS,
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ISOMAP

o Extension of multidimensional
scaling (MDS)

o Considers geodesic instead of
Euclidean distances



Geodesic vs. Euclidean distance

Source: Tenenbaum, 1998



Calculating geodesic distances

o Q: How do we calculate geodesic
distance?




ISOMAP Algorithm
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Example: ISOMAP vs. MDS
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Example: Punctured sphere

o ISOMAP generally fails for manifolds
with holes




+/-'s of ISOMAP

o Advantages:

Easy to understand and implement
extension of MDS

Preserves “true” relationship between
data points

o Disadvantages:
Computationally expensive
Known to have difficulties with “holes”



Locally Linear Embedding (LLE)

o Forget about global constraints, just
fit locally

o Why? Removes the need to
estimate distances between widely
separated points

ISOMAP approximates such distances
with an expensive shortest path search



Are local constraints sufficient?
A Geometric Interpretation

o Maintains approximate global structure
since local patches overlap

o900




Are local constraints sufficient?
A Geometric Interpretation

o Maintains approximate global structure
since local patches overlap




LLE Algorithm

Source: Saul, 2002
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Example: Synthetic manifolds

Manifold Sampled LLE ISOMAP

Modified from: Saul, 2002



Example: Real face images

Source: Roweis, 2000
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+/-'s of LLE

o Advantages:

More accurate in preserving local
structure than ISOMAP

Less computationally expensive than
ISOMAP

o Disadvantages:

Less accurate in preserving global
structure than ISOMAP

Known to have difficulty on non-convex
manifolds (not true of ISOMAP)



Charting

o Similar to LLE in that it considers
overlapping “locally linear patches”
(called charts in this paper)

o Based on a statistical framework
instead of geometric arguments



Charting the data

o Place Gaussian at each point and estimate
covariance over local neighborhood

o Brand derives method for
determining optimal covariances in
the MAP sense

O Enforces certain constraints to ensure
nearby Gaussians (charts) have similar
covariance matrices



Find local coordinate systems

o Use PCA in each chart to determine local
coordinate system

Local
Coordinate




Connecting the charts

o Exploit overlap of each
neighborhood to determine
how to connect the charts

Embedded

o Brand suggest a Charts

weighted least squares
problem to minimize
error in the projection of
common points




Example: Noisy synthetic data

original data embedding, XY view XYZ view
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+/-'s of Charting

o Advantage:

More robust to noise than LLE or
ISOMAP

o Disadvantage:

More testing needed to demonstrate
robustness to noise
Unclear computational complexity

o Final step is quadratic in the number of
charts



Conclusion:
+/-’'s of dimensionality reduction

o Advantages:

Excellent visualization of relationship
between data points

o Limitations:
Computationally expensive
Need many observations
Do not work on all manifolds



Action Synopsis:
A fun example

o Action Synopsis: Pose Selection and Illustration.
Jackie Assa, Yaron Caspi, Daniel Cohen-Or. ACM
Transactions on Graphics, 2005.

Source: Assa, 2005



Aspects of motion

o Input: pose of person at each frame

o Aspects of motion:
Joint position
Joint angle
Joint velocity
Joint angular velocity

Source: Assa, 2005



Dimensionality reduction

o Problem: How can these aspects of motion
be combined?

o Solution: non-metric, replicated MDS
distance matrix for each aspect of motion

best preserves rank order of distances across
several distance matrices

o Essentially NM-RMDS implicitly weights
each distance matrix

Source: Assa, 2005



Pose selection

o Problem: how do you select
interesting poses from the
“motion curve”?

Typically 5-9 dimensions

o Assa et al. argue that
interesting poses occur at
“locally extreme points”

Source: Assa, 2005




Finding locally extreme points

Source: Assa, 2005



Do you need dimensionality reduction?

,4@444,&'1

RMDS A/
3dms |, \/

Source: Assa, 2005



Example: Monkey bars

Source: Assa, 2005



Example: Potential application
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Critique of Action Synopsis

Pros:
+ Results are convincing
+ Justified algorithm with user study

cons:

- Little justification for selected aspects of
motion

- Requiring pose information as input is
restrictive

- Unclear that having RMDS implicitly
weight aspects of motion is a good idea
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