Project Update: Law Enforcement Resource Allocation (LERA) Visualization System Michael Welsman-Dinelle April Webster	 Motivation: It is difficult to assess the real impact of different policy decisions and management programs on crime rates: E.g., Do anti-drug programs help to reduce youth crime rates? Searching for relationships between different variables in a large dataset can be time consuming and frustrating In many cases, crime analysts perform this type of analysis using a statistics program (e.g., SAS, SPSS, R) or a data analysis program (e.g., Excel) 	Our goal: • To enable crime analysts to answer these types of questions by bringing together both crime data and crime enforcement policies into a single INTERACTIVE visualization system that supports correlation/regression analysis	 We have 2 types of data sets for about 800 US law enforcement agencies for the year 2000: Crime report data Violent (e.g., murder, robbery, rape, etc) and non-violent (e.g., burglary, motor vehicle theft, larceny-theft,) crime rates for an agencies jurisdiction Law Enforcement Management data Specialized units operated by an agency (e.g., juvenile crime unit, drug education in schools, etc) Investment in technology, training, budgets
 Supported tasks: We aim to support three different types of tasks required of a crime analyst: How does a program impact a crime rate E.g., How does field training impact violent crime? How does a program impact different crime rates E.g., Do drug education programs have an impact on motor vehicle theft rates? How about larceny-theft? How do different programs impact a crime rate E.g., Which programs have been most successful in reducing violent crime rate? 	Solutions considered: We considered 4 different solutions for the task of interactively visualizing correlation: Parallel Coordinates Repeating an axis for a program; not many dimensions used Table Lens Interested in trends and patterns, not detailed numerical info General Graph Drawing Techniques No compelling info for connecting local agencies by edges Scatterplots Tool commonly used by crime analysts	 Our solution: An interactive scatterplot visualization system Implementation: Java Prefuse Java toolkit Support for scatterplots, tables, SQL queries And for display issues such as mapping from field values to axes, colour, shape, etc Statistical toolkit We have located a Java class that contains formulae for calculating different types of regression curves (linear, quadratic, exponential, etc) 	Our solution: ● Specific features: • Outlier removal - ability to easily remove outliers, manually and automatically • Regression curves • Ordering of small multiples – using some scagnostic (e.g., correlation based one?) • Aggregation – a focus and context feature x Marking – simultaneous, interactive on multiple scatterplots • Use of filtering to select one or more states
 Anticipated Challenges: Finding a Java statistics toolkit with support for outlier detection and regression curve generation Determining good orderings of scatterplot small multiples Finding a domain expert to use our tool and assess its usability 	Progress: • Phase 0 – completed • Downloaded and cleaned sample data • Using Prefuse toolkit for scatterplots • Found Java code for regression curve generation • Unable to find Java code for outlier detection • Phase 1 – completed • Single scatterplot has been implemented • Domain expert has been contacted for usability study; waiting for confirmation of participation	 Progress: Phase 2 Part 1 – in progress Implementation of statistical methods: regression curves, manual outlier removal Plan evaluation component Phase 2 Part 2 – to begin Nov 24 Implementation of small multiples Phase 3 – to begin Dec 1 System evaluation Implementation of optional features – marking Draft report 	