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Abstract—The film and video game industries make use of large motion
capture databases for creating realistic animations of human motion.
Recently, significant research efforts have been devoted to data-driven
animation techniques. These techniques allow new, realistic motion
sequences to be automatically synthesized from existing motion capture
sequences that are similar to the desired motion sequence. Unfortu-
nately, identifying similar motion sequences is a challenging problem
since logically similar motion sequences are often not numerically
similar.

This paper introduces an interactive visualization environment for
analyzing the structure that is imposed on a human motion database
by a given similarity metric. Our environment provides insights into
similarity metrics that are difficult to obtain by analyzing numerical
results or by using existing visualization environments. We illustrate the
use of our visualization environment by analyzing a recently developed
similarity metric which is applied to a subset of the CMU motion capture
database.

Index Terms—visualization, motion capture, similarity metric, proximity
data, multidimensional scaling

1 INTRODUCTION

Large motion capture (mocap) databases are commonplace
in the film and video game industries, where they are used
to achieve realistic animations of human motion. Recently,
significant research efforts have been devoted to developing
methods for identifying similar motion sequences in order
to allow animators to quickly find similar motions within
a mocap database [1]–[3] or to synthesize new, realistic
motions by morphing and blending existing mocap data [4],
[5]. Identifying similar motion sequences is a challenging
problem since logically similar motion sequences are often
not numerically similar. For example, motion sequences of
individuals boxing are logically similar although they differ
significantly if numerically compared on a frame-by-frame
basis. Thus, the essential problem is to define a similarity
metric that can “bridge the semantic gap between logical
similarity as perceived by humans and computable numerical
similarity” [3].

Numerous similarity metrics have been defined for compar-
ing mocap sequences (e.g., [2], [3], [6]–[8]). Which of these
should be preferred? What are their respective strengths and
weaknesses? How can a given metric be improved? Is the
structure imposed on a mocap database by a given similarity
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metric useful for indexing the database or for the automatic
synthesis of new motions?

This paper introduces an interactive visualization environ-
ment that can aid in answering questions of this nature.
Our environment makes use of established InfoVis practices
(i.e., multidimensional scaling, coordinated views, details-on-
demand, and visual encoding principles) which facilitate the
rapid understanding of the structure imposed on a mocap
database by a given similarity metric. This permits key as-
pects of a similarity metric to be quickly understood. Our
environment provides insights into similarity metrics that are
difficult to obtain by using existing visualization environments
or by analyzing numerical results. To illustrate the use of this
visualization environment, the similarity metric proposed by
Li and Prabhakaran [7] is analyzed on a subset of the CMU
mocap database1.

Figure 1 gives an overview of our proposed MotionVis en-
vironment. Given a similarity metric of interest, a dissimilarity
matrix is constructed which indicates the dissimilarity between
all pairs of mocap sequences in a mocap database. Multidi-
mensional scaling (MDS) is then applied to the dissimilarity
matrix in order to allow its structure to be visualized using a
2-dimensional scatterplot. By tightly coupling this scatterplot
view with auxiliary details-on-demand views critical informa-
tion about the similarity metric can be quickly obtained.

The direct contribution of this paper is the design and
evaluation of an interactive visualization environment for an-
alyzing mocap-based similarity metrics. We justify our design
choices and demonstrate that our system provides valuable
insight into the strengths and weaknesses of a mocap-based
similarity metric. The broader contribution of this paper is
demonstrating, by means of example, that a well-designed
visualization environment can provide valuable insight into a
similarity metrics. Similarity metrics abound in the natural and
applied sciences and a general framework for gaining insight
into their operation would be of great value. The application
of visualization techniques to similarity metric understanding,
as opposed to traditional data understating, is an important and
relatively unexplored area of research that we believe is worth
the attention of the InfoVis community.

The remainder of this paper is organized as follows. In
Section 2 we describe related work. An overview of our
visualization environment is given in Section 3. In Section 4
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Fig. 1. MotionVis is an interactive environment for analyzing the structure that is imposed on a human motion database
by a similarity metric. Given a similarity metric of interest, a dissimilarity matrix can be constructed for the mocap
database. MDS can then be applied to the dissimilarity matrix in order to allow its structure to be visualized using a
scatterplot. Tight coupling between the scatterplot view and details-on-demand views allows critical information about
the similarity metric to be quickly obtained.

we explore issues specific to using mocap data and in Section 5
we discuss methods for performing MDS. We formally justify
our design decisions in Section 6 and illustrate the use of our
visualization environment in Section 7. A discussion of the
strengths, limitations, and potential future work - including
generalizing our environment beyond mocap data - is given in
Section 8.

2 RELATED WORK

This work is unique in that its aim is to provide a visualization
environment for understanding a similarity metric. However,
many of the individual elements of MotionVis are in main-
stream use and have a rich history of research. The work
related to MotionVis can be divided into three categories:
motion visualization, high-dimensionality visualization, and
visual encoding.

2.1 Motion visualization
Two different aspects of motion visualization are discussed
in this section. We begin by considering the large number
of software packages that have been developed for creating
animations with mocap data. Although the goals of these
packages are different than ours, they contain many useful
conventions which we have adopted and extended. Next, we
discuss two key studies that investigate how the human brain
processes human motion. The results of these studies validate
the use of simplified human models for visualizing mocap
data.

Several commercial programs (e.g. Maya, Poser) and open
source programs (e.g., Blender, MotView, CMU mocap Player)
exist for manipulating mocap data and visualizing it in the
form of an animated 3-dimensional skeleton. These programs
range from complete animation packages used extensively

by the film and movie industries to simple mocap viewing
utilities used by hobby animators. They are not intended to
address the problem of understanding a similarity metric.
Nevertheless, we adopt and extend a number of conventions
used by these programs. Most notably, MotionVis provides
two details-on-demand views which allow mocap sequences
to be visualized as an animated 3-dimensional skeleton. We
also allow the user to switch between a number of preset views
(i.e., isometric, front, side, top) that have become ubiquitous
in these programs. Like many of these programs, we also
make use of a tiled ground plane and simple shadows to
help establish the 3-dimensional position of an object within
a virtual world (see [9] for an introduction to different depth
cues). Finally, we modify the concept of end-effector tracing
developed in MotView2 to that of path tracing in order to allow
the user to easily visualize the path traveled during a mocap
sequence.

Fig. 2. Two frames from a point-light display generated
from mocap data of a walking sequence [10].

Johansson [11] developed the point-light display in 1975

2. www.cs.wisc.edu/graphics/Courses/cs-838-
2000/Students/gardner/motView/
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to investigate the capabilities of the human brain in the
context of understand human motion. In a point-light display,
lights are attached to a person and their movements recorded
in a darkened room so only the moving lights are visible
(see Figure 2). It was established that test subjects watching
such a video could immediately infer a walking human. This
demonstrates that humans are adept at understanding human
motion even from a very sparse amount of visual information.
As such, it is reasonable for animation packages and our
visualization environment to animate mocap sequences using
a simplified model of the human body.

Hodgins et al. [12] conducted experiments with a simple
stick figure model and a more detailed polygonal model to
determine if a viewer’s perception of motion characteristics is
affected by the geometric model used. Their results indicate
that the perception of motion is influenced by the geometric
model used to render the motion. For this reason, we allow
the user to select between simple stick figure models and more
complex cylinder and ellipsoid-based models.

2.2 High-dimensionality visualization
Many techniques have been developed for visualizing high-
dimensional data sets. Although these techniques are generally
concerned with extracting meaning from a dataset (as opposed
to gaining insight into an algorithm operating on the dataset),
this work has influenced the design of our system.

A critical design decision in our system is to use MDS
in order to allow a dissimilarity matrix to be viewed as
a simple scatterplot. As an alternative, we could have em-
ployed a scatterplot matrix (or more generally, a multiform
matrix [13]) or parallel coordinates [14] in order to visualize
all dimensions of the dissimilarity matrix. In particular, we
could have made use of the XmdvTool [15] or XGobi [16]
visualization environments which consist of a number of
predefined visualizations (e.g., scatterplot matrix, star glyphs,
and parallel coordinates) for exploring high-dimensional data
sets. Although the visualization techniques provided in these
environments excel at providing insight into the relationships
between dimensions, they are not as effective at indicating
the relationship between pairs of data points. Since we are
interested in understanding the similarity metric which defines
the dissimilarity between pairs of data points we favour a
visualization environment that focuses on this aspect of the
data.

Techniques such as self-organizing maps (SOM) [17] and
graph layout algorithms [18] can be used to achieve low
dimensional visualizations of high dimensional data, but we
prefer MDS since it directly aims to preserve the dissimilarity
between pairs of data points [19]. do not directly aim to
preserve pairwise dissimilarity. A notable visualization envi-
ronment that is tailored to proximity data is XGvis [20]. XGvis
is an interactive visualization environment that incorporates
a number of MDS techniques along with useful pre- and
post-processing techniques (e.g., lower and upper trimming of
dissimilarities, random removal of dissimilarities for stability
checks). Unfortunately, being a general visualization tool it
lacks data specific views. We feel data specific, details-on-
demand views are essential for understanding the structure

imposed on a database by a similarity metric. This is especially
true when the underlying data is as complex as a mocap
sequence. As such, our visualization environment consists of a
number of details-on-demand views which are tightly coupled
with the scatterplot view obtained using MDS.

Arguably the work most similar to ours is that of Sakamoto
et al. [1]. They have developed an interactive environment for
navigating through a mocap database. They employ SOM to
arrange pose data from mocap sequences onto a 2-dimensional
grid. Similar poses are then clustered together and a charac-
teristic pose is used to represent the cluster and its general
location on the grid. The user can then search for mocap
sequences by selecting characteristic poses that would appear
in the sequence they are interested in. This work is similar to
our own in the sense that it is concern with visualization in the
context of mocap data. However, their interest is in providing
a visualization that is focuses specifically on the mocap data,
whereas our goal is to develop a visualization environment
that will aid in the understanding of a mocap-based similarity
metric.

2.3 Visual encoding
Proper visual encoding is essential in a visualization environ-
ment that aims for rapid exploration and understanding. The
most critical encoding in our system is distinguishing between
different motion classes in the scatterplot view. We follow
Mackinlay’s [21] suggestion of encoding nominal data using
hue. The exact colours selected follow the advice of Ware
[9]. Berlin and Kay [22] conducted a study of more than 100
languages and determined that there is a relatively fixed order
in which colour names appear in languages. Ware’s colour
suggestions are based on the most common 11 colours found in
the Berlin and Kay study. Mackinlay also indicates that shape
is a suitable method for encoding nominal data. We make use
of shapes for relating selected points in the scatterplot view
to their skeletons in our details-on-demand views (see Figure
8).

3 OVERVIEW

Our MotionVis environment has been designed to support
the interactive exploration of the structure imposed on a
mocap database by a given similarity metric. The goal of this
environment is to allow key aspects of a similarity metric to
be quickly understood. The MotionVis interface is shown in
Figure 3. It consists of a details-on-demand section (left) and
a scatterplot section (right), along with a number of controls
for interacting with these views. We provide three different
details-on-demand views: the skeletal view, the motion map
view, and the dissimilarity metric view.

3.1 Scatterplot view
The scatterplot view is a visualization of the structure imposed
on the mocap database by a given similarity metric. Figure
1 illustrates how this scatterplot view is obtained. Given a
similarity metric of interest, a dissimilarity matrix is con-
structed which indicates the dissimilarity between all pairs of
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Fig. 3. The MotionVis interface is divided into two main sections: a details-on-demand section (left) and a scatterplot
section (right). Different features of the program are made available through menu options and controls provided below
each section. Here, the details-on-demand section is set to the skeletal view which allows for the direct visualization of
the mocap sequences associated with the selected points in the scatterplot view (shown by black circles). Shapes are
used to allows user to easily associate a skeleton with its scatterplot point. Alternatively, the mouse can be hovered
over a scatterplot point which will cause the skeleton associated with it to be highlighted by a red circle.

Fig. 4. The scatterplot view supports both translation and zooming in order to allow clusters of points to be
investigated.
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mocap sequences in a mocap database. MDS is then applied
to the dissimilarity matrix in order to allow its structure to be
visualized using a 2-dimensional scatterplot.

To facilitate understanding of this structure, motion classes
and sub-classes are colour coded to allow similar motions to
be easily identified. Choice boxes below the scatterplot view
allow the user to select which sub-classes they are interested
in viewing. The scatterplot view supports translation and
zooming in order to allow clusters of points to be investigated
as illustrated in Figure 4. A toolbar below the scatterplot view
allows the user to switch between different motion normal-
ization techniques (Section 4.2), MDS techniques (Section 5),
and similarity metrics (Section 4.4). The toolbar also allows
the user to return to the default view where all points are
guaranteed to be visible and to toggle on or off tooltips
that indicate the name of the mocap file associated with a
scatterplot point.

3.2 Details-on-demand views
MotionVis consists of three details-on-demand views: the
skeletal view, the motion map view, and the dissimilarity
matrix view. A critical aspect of the proposed environment
is the tight coupling between the scatterplot view and these
details-on-demand views. Each of these views provides infor-
mation useful for understanding the structure displayed in the
scatterplot view.

Skeletal view
Selecting a point in the scatterplot view causes the mocap se-
quence associated with this point to appear in the skeletal view.
The mocap sequence is animated using a simplified geometric
model. Menu options allow the user to select either a stick-
figure, cylinder, or ellipsoid-type model depending on their
personal preference and available processing power. Below the
skeletal view, standard movie controls are provided to allow
the user to navigation through a mocap sequence. The user
can navigate within the skeletal view using a world-in-hand
navigation model or switch between a number of predefined
camera views (i.e., isometric, front, side, top) provided on the
toolbar. The toolbar also provides the ability to toggle on or
off the following features:

Fig. 5. A skeleton can be constrained to a single position
in the virtual world in order to aid in comparing multiple
mocap sequences.

• Constrained motion: it is natural to visualize a mocap
sequence where the skeleton’s position in the virtual
world is unconstrained. However, when multiple mocap
sequences are being considered, it is often easier to
compare them when the skeletons are constrained to stay
at a specific point within the virtual world (see Figure 5).

• Shadows: shadows provide a strong cue as to the position
of a skeleton in the virtual world. Since realistic shadows
are not required to establish position within a scene (see
[9], page 279) we make use of a simplified shadow
model in order to reduce the computational demands of
our system. To further reduce computational demands,
shadows can be turned off.

• Path tracing: the path followed by a skeleton is displayed
as a curve (see Figure 6). This feature is particularly
helpful when combined with the constrained motion
feature as it allows the overall movement of a motion
to be understood.

• Shape encoding: in order to associate a skeleton with
its scatterplot point shape encoding is used as shown in
Figure 3.

Fig. 6. Path tracing produces a curve that indicates the
path traveled during a mocap sequence.

The association between a skeleton and scatterplot point can
also be determined by hovering over either of these elements.
Hovering over a scatterplot point causes a red circle to be
drawn around the associated skeleton. Similarly, hovering over
a skeleton causes a red circle to be drawn below it (indicating
it has been selected) and the associated scatterplot point to be
surrounded by a black square (see Figure 7).

Motion map view
The motion map view supports the same features and coordi-
nated view techniques as the skeletal view. However, instead
of laying out skeletons along the ground plane, they are laid
out in a vertical matrix as shown in Figure 8. The major
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Fig. 8. The motion map view is designed to support the visualization of a large number of mocap sequences. Skeletons
are laid out in a manner that ensures they never occlude each other.

Fig. 7. Placing the mouse over a skeleton causes it to
be selected (indicated by the red circle) and the point
associated with it to be highlighted with a black square.

advantage of this layout is that it ensures skeletons will never
occlude each other. However, this is at the expense of having
to constrain all skeletons to a single point in space which
can make understanding their motion more challenging. As
discussed above, this limitation can be partially overcome by
turning on path tracing.

Dissimilarity matrix view
The dissimilarity matrix view is divided into two sections
(see Figure 9). In the top section, a dissimilarity matrix for
the selected scatterplot points is given. Hovering over a point
in the scatterplot view causes the row associated with this
point to be highlighted. Selecting a cell in the dissimilarity
matrix causes a line to be drawn between the two points
corresponding to this cell and causes all points which are
not selected to fade into the background. The colour of the

line indicates the distance between the points as specified
by the colourmap in the bottom section of this view. The
bottom section consists of a colourmap and a pair of spin
controls which we collectively refer to as the dissimilarity
range control. This control allows a range of dissimilarities
to be specified. Pairs of points that have a dissimilarity within
this range will have a line drawn between them (see Figure
17).

4 MOTION CAPTURE DATA

We begin this section with a discussion of the mocap data
used to evaluate our system. Methods for normalizing this
data are then presented. Finally, we discuss the skeletal model
used in this work along with the mocap-based similarity metric
considered in our evaluation.

4.1 Motion capture data

To evaluate the proposed system, we consider walking, run-
ning, jumping, boxing, and cartwheel mocap sequences from
the CMU mocap database. These motion classes were selected
because they form an interesting subset of the database. In
particular, walking and running are similar in nature (arguably
different degrees of a single locomotion class) whereas jump-
ing, boxing, and cartwheel sequences are logically distinct
motion types. There are also interesting subclasses within
three of these motion classes. Specifically, we consider a
110 walking sequences (with subclasses “slow walk”, “walk”,
and “walk” with various turns), 44 running sequences (with
subclasses “run/jog”, “run”, and “run” with various turns),
17 jumping sequences (with subclasses “forward jumping”,
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Fig. 9. The dissimilarity matrix view consists of two sections. In the top section, a dissimilarity matrix for the selected
scatterplot points is given. The dissimilarity range control in the bottom section can be used to connect all pairs of
points within a user specified range of dissimilarities by a line.

“jumping”, “high jump”, and “jump up and down, hop on one
leg”), 5 boxing sequences, and 3 cartwheel sequences.

We now introduce some terminology that is useful for
discussing mocap data. Human motion can be described using
a simplified model of the human skeleton. A skeleton consists
of bones that are connected by joints. Motion capture can be
thought of as a process which records a temporal sequence
of 3-dimensional joint positions. The position of all joints at
a given time is known as a pose. A pose can be described
as a vector p ∈ R3×|J|, where |J| is the number of joints
in the skeletal model and each joint requires 3 elements to
describe its 3-dimensional position. A mocap sequence can
then formally be described as a time-dependent sequence of
poses. This can be represented by a 2-dimensional matrix
S ∈ RT×(3×|J|), where T is the number of poses (frames) in
the mocap sequence.

The mocap sequences we are considering vary in length
from 2 to 46 seconds (i.e., T varies significantly between
mocap sequences) and are sampled at a fixed rate of 120
frames per second. The CMU mocap data uses a skeletal
model of 32 joints (i.e., |J| = 32). However, as will be
discussed in Section 4.3, we make use of a simplified model
that consists of only 18 joints.

4.2 Motion normalization

In general, we want two mocap sequences to be considered
similar if the only significant difference between them is
some global affine transformation, such as a translation or

rotation. As such, it is typical to normalize mocap data before
measuring similarity. We illustrate the need for normalization
by example. Consider two walking sequences which begin
at different positions and orientations. To compare these mo-
tions, we should normalize the sequences so they start at the
same position and have the same initial orientation. This is
reasonable unless global position and orientation have special
significance in the intended application.

For some applications, this single global normalization step
is sufficient. However, we may desire a broader definition of
similar. For example, we may desire all walking sequences to
be considered similar regardless of whether they curve to the
right or left. To achieve this, we can normalize the sequences
every frame so the walking motion is constrained to be along
a line facing in a particular direction.

Whether normalization is performed only once or at each
frame, it is typically applied uniformly to all joints. We
denote per frame normalization with an F , a single initial
normalization with an I, and the coordinates (x,y,z) and angles
(α,β ,γ) to be normalized with subscripts. Figure 10 gives the
coordinate system used by MotionVis. MotionVis supports the
following normalization methods:
• Fxyz,αβγ : at each frame the position Pxyz and orientation

θαβγ are normalized. This causes the similarity of mo-
tions to be based purely on the location of joints relative
to the root joint (see Figure 11). Informally, this causes
all motions to be constrained to a single position and a
fixed orientation which removes any differences due to
motions following different paths.
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• Fxyz,β : rotations about the x and z-axis are no longer
normalized. This has little effect on most motion classes
since there is generally little rotation about these axes.
However, it is significant for a motion class such as
cartwheel where there is significant rotation about these
axes.

• Fxz,β : movement along the y-axis is no longer normalized.
This has little effect on most motion classes since there
is generally little movement along this axis. However, it
is significant for a motion class such as jumping which
has significant movement along the y-axis.

• Ixyz,αβγ : mocap sequences are normalized to begin at the
same position and to have the same initial orientation.

• Ixyz,β : mocap sequences are normalized to begin at the
same position and to have the same orientation about the
y-axis.

Fig. 10. MotionVis uses a right-handed coordinate sys-
tem where the the ground plane is perpendicular to the
y-axis.

In order to compare mocap sequence, it is typically desirable
to map the mocap sequences to a common skeletal model. We
adopt this approach here.

4.3 Skeletal model
All mocap sequences in the CMU mocap database use a
skeletal model consisting of 32 joints. The placement of
markers used to record these mocap sequences can be found
on the CMU mocap website3. This model is relatively detailed.
For example, the skeletal model considers the position of
the thumb joint. This level of detail is unnecessary when
comparing motion classes and may even be misleading unless
the significance of different joints is explicitly considered by
the similarity metric. For example, when comparing walking
mocap sequences, changes in the position of the thumb joint
are clearly less important than changes in position of the femur
joint. To evaluate our system, we consider the similarity metric
proposed by Li and Prabhakaran [7] which does not perform
any joint weighting. For these reasons, we make use of a
simplified model consisting of the 18 most significant joints
as shown in Figure 11. This should result in a skeletal model

3. mocap.cs.cmu.edu/markerPlacementGuide.pdf

similar to that considered by Li and Prabhakaran who also
make use of a skeletal model with 18 joints, although do not
specify which joints were used.

Fig. 11. Skeletal model consisting of rigid bones that are
connected by joints. This model considers the 18 most
significant joints in the CMU mocap data.

4.4 Li’s similarity metric

In this section we summarize the similarity metric proposed
by Li and Prabhakaran [7] using the notation introduced in
Section 4.1. Li’s similarity metric consists of the follow 3
steps:

1) Apply singular value decomposition (SVD) to each
mocap sequence Si to find its principal component, ci.

2) Normalize each principal component, ci, so its first
element is non-negative by multiplying ci by −1 if and
only if the first element is negative.

3) The dissimilarity of two mocap sequences, Si and S j, are
given by diss(Si,S j) =| ci ·c j |=| ci || c j || cos(θ) |, where
θ is the angle between the two principal components.

Figure 12 illustrates how Li’s similarity metric works. Con-
sider two mocap sequences, S1 and S2, of dimensionality
2 (instead of the 54 dimensions required for a skeleton of
18 joints), where the first motion consists of 4 poses and
the second motion consists of 3 poses. Each pose can be
viewed as a data point in a 2-dimensional space. The principal
component of a mocap sequence is the axis which captures the
greatest variance of the data when the data is projected onto
this axis (the blue and red lines in Figure 12). The premise of
Li’s similarity metric is that similar mocap sequences should
have similar principal components. As such, the dissimilarity
between two mocap sequences is defined as the smallest angle
between the principal components of these mocap sequences.
The normalization in step 2 is required because the SVD of a
matrix is only uniquely determined up to the sign.

This similarity metric has many favourable properties which
has encouraged its use in this work:
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• it can be applied to mocap sequences with varying
numbers of poses, T

• it is relatively inexpensive to compute
• it is simple to understand and implement

We also consider a simple alternative based on Li’s similarity
metric. Instead of applying the metric to joint positions, we
apply it to joint velocities. The velocity of each joint is esti-
mated as the difference in position between two consecutive
poses. Li’s similarity metric can be applied to the resulting
velocity matrix without modification.

Fig. 12. Li’s similarity metric applied to artificial mocap
sequences consisting of 4 poses (blue) and 3 poses (red),
where each pose has a dimensionality of 2. The corre-
sponding colour axes indicate the principal component for
each of these matrices and the angle between these axes
is used as a measure of dissimilarity.

5 DIMENSIONALITY REDUCTION
A mocap-based similarity metric can be use to construct a
dissimilarity matrix which indicates the dissimilarity between
all pairs of mocap sequences in a mocap database. We wish
to construct a visualization of this dissimilarity matrix, so
we can investigate the structure imposed on the database by
the similarity metric. Understanding this structure will allow
key aspects of the similarity metric to be understood. Our
approach is to apply MDS to the dissimilarity matrix so it can
be visualized as a 2-dimensional scatterplot.

Our MotionVis environment supports three MDS techniques
that have different strengths and weaknesses:

1) Classic MDS [19]: a linear dimensionality reduction
technique which is relatively fast to compute. This
approach also supports forward and reverse mappings.
Depending on the final application, a linear subspace
may be preferred and thus understanding the linear
structure imposed on a database by a similarity metric
will be of particular interest.

2) Metric MDS [19]: a nonlinear dimensionality reduction
technique. It is more computationally expensive than
classic MDS and does not provide mapping functions.
However, the resulting visualization is generally more
accurate since it performs a nonlinear reduction.

3) Non-metric MDS [23]: a technique that aims to preserve
the rank order of dissimilarities as opposed to the exact
dissimilarity. The resulting visualization will reflect the
rank order of dissimilarities better than the above meth-
ods, at the expense of losing specific information about
the dissimilarity between pairs of mocap sequences. Its
computational cost is comparable to metric MDS and
it also lacks mapping functions. This visualization is
ideal when only rank order is of interest. In practice,
we see this visualization being used in conjunction with
the metric MDS visualization or as a “last resort” when
the stress, as defined below, of metric MDS is too large
for its visualization to be trusted.

It is critical that the scatterplot be an accurate visual represen-
tation of the dissimilarity matrix. We make use of Kruskal’s
stress metric [23] in order to assess how well a visualization
reflects the dissimilarities in the dissimilarity matrix. This met-
ric is a simple normalization of the sum of squared differences
between the Euclidean distances in the visualization, xi j, and
the actual input dissimilarities, di j:

stress =

√√√√∑∑(xi j−di j)
2

∑∑d2
i j

High stress indicates that the resulting visualization poorly
reflects the dissimilarity matrix. Table 1 gives the stress for
each MDS technique for the different motion normalization
methods discussed in Section 4.2. Roughly speaking, a stress
of 0.078 means that on average there is a 7.8% error between
the actual dissimilarity and the Euclidean distance as indicated
in the scatterplot visualization. We suggest only using visual-
izations where the stress is less than 0.1 and as such provide
this stress measure directly to the user.

Fxyz,αβγ Fxyz,β Fxz,β Ixyz,αβγ Ixyz,β
Classic MDS 0.078 0.143 0.106 0.218 0.213
Metric MDS 0.052 0.092 0.068 0.143 0.156

Non-metric MDS 0.035 0.086 0.064 0.053 0.070

TABLE 1
Stresses of different MDS techniques for different motion

normalization methods.

6 DESIGN OF MOTIONVIS

This section justifies the design discussions made during the
development of MotionVis. Specifically, we discuss our choice
of visual encodings, layout algorithms, navigation models,
use and selection of details-on-demand views, and use and
implementation of coordinated visualization.
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Fig. 13. The scatterplot view uses colour to quickly allow related motion (sub)classes to be identified. Choice boxes
allow specific subclasses to be viewed. Clicking on the button next to a motion (sub)class ensures all points of this
(sub)class within the current view are visible.

6.1 Scatterplot view

A critical design decision in our system is the use of MDS to
allow the dissimilarity matrix to be visualized as a scatterplot.
Since we are interested in understanding the similarity metric
which defines the dissimilarity between pairs of data points,
we selected a visualization that focuses on the relationship
between data points. This rules out the use of high-dimensional
visualization techniques such as scatterplot matrices, star
glyphs, and parallel coordinates which are intended to reveal
the relationship between dimensions, but fail to give a clear
indication of the relationship between pairs of data points.

The relationship between data points is often referred to as
proximity data. Two common methods exist for visualizing
proximity data: graph layout algorithms and dimensionality
reduction. We have selected dimensionality reduction and
specifically MDS as it directly aims to preserve the dissim-
ilarity between pairs of data points [19]. In addition, MDS is
a family of dimensionality reduction techniques [24] that allow
a range of useful visualizations to be obtained as discussed in
Section 5. DeJordy [18] argues that graph layout algorithms
often give superior visualizations of proximity data as they

are less sensitive to outliers and are better suited to interactive
exploration. Unfortunately, these advantages are offset by
the fact that a graph layout based visualization will not be
reflective of the actual dissimilarity between data points. As
such, we prefer the use of MDS, but are considering the
inclusion of a graph layout based visualization as a future
extension to MotionVis.

Visual encoding
In general, the most important aspect of a similarity metric
is its ability to distinguish between different motion classes.
The scatterplot view indicates the global structure imposed
on a mocap database by a similarity metric. As such, the
most critical encoding in our system is distinguishing between
different motion classes in the scatterplot view.

We encode the motion classes using hue since Mackinlay
[21] has established it as being the best encoding for nominal
data (next to spatial position). Berlin and Kay [22] conducted
a study of more than 100 languages and determined that there
is a relatively fixed order in which colour names appear in
languages. Ware [9] has suggest a set of colours to be used for
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visual encoding based on the 11 most common colours found
in the Berlin and Kay study. The order of colours suggested
by Ware is largely based on colour space research. We have
adopted Ware’s colour set with a few small modifications to
ensure our application is suitable for colour blind individuals
(see Appendix A).

Guaranteed visibility and sub-class highlighting
Points in the scatterplot view are often tightly cluster. A
method to ensure that all points of a given motion class are
visible is required. This is achieved by having the user click
on a button next to the motion class to ensure all points of
that class are visible.

To facilitate understanding the structure within a motion
class, different subclasses can be selected from choice boxes
below the scatterplot view. Selecting a subclass causes all
points from this subclass to be drawn in a more saturated
colour than the class it belongs to and also ensures these points
will be rendered last.

6.2 Skeletal view
In order to fully understand the structure in the scatterplot
view, it is typically necessary to investigate the mocap se-
quences associated with various scatterplot points. An effective
means to visualize a mocap sequences is direct visualization
using a (simplified) animated human model since we are
extremely adept at understanding human motion. We refer
readers to the work of Johansson [11] who demonstrated that
humans can interpret human motion even from simple point-
light displays. Equally as convincing is the widespread use
of commercial and open source animation packages which
make use of simple geometric human models during the
development of realistic, human animation sequences. Based
on the success and widespread use of commercial and open
source animation packages, we have decided to adopted many
of the conventions used by these programs (e.g., world-in-hand
navigation combined with specific preset views, use of a tiled
ground plane to indicate depth).

Hodgins et al. [12] conducted experiments with a simple
stick figure model and a more detailed polygonal model
in order to establish that a viewer’s perception of motion
characteristics is affected by the geometric model used. Their
results suggest that a subject is better able to detect small
motion changes with the polygonal model than the stick
figure model. However, they caution against generalizing these
results beyond the three types of motion variations they
considered. Nevertheless, these results do establish that the
perception of motion is influenced by the geometric model
used to render the motion. For this reason, we allow the user to
select between a simple stick figure model and more complex
cylinder and ellipsoid-based models. As a practical matter,
these three model types also provide a compromise between
frame rate and model complexity.

Visual encoding
To help establish the motion class associated with a skeleton,
we decided to have the colour of a skeleton’s bones reflect

the motion class it belongs to (see Figure 3). This has the
additional advantage that the visual encoding of the motion
classes uses colours with well established names as discussed
in Section 6.1. This is a great aid when trying to discuss
different mocap sequences in the skeletal view. To distinguish
between different skeletons from the same motion class, we
ensure that the colour of a skeleton’s joints are unique. The
first ten joint colours are assigned based on the colours
suggested by Ware [9]. This colour list is also used to encode
the bones of a skeleton. Although it is not critical, we have
modified the saturation value used for joint colours to make
them different than the bone colours. In practice, a user rarely
has a need to consider more than ten skeletons, but if more
skeletons are considered their joint colour are assigned a
random colour of high saturation (to ensure it does not blend
in with the black background) that is guaranteed to be unique.

Fig. 14. Shapes used to associate selected scatterplot
points with skeletons.

In order to allow the user to associate a scatterplot point
with its skeleton, a shape encoding scheme is employed (see
Figures 3 and 8). We use shapes for this encoding because
Mackinlay [21] has demonstrated that shapes are a strong
encoding technique for nominal data. Specifically, we use
the set of shapes shown in Figure 14 as they are easily
distinguishable from each other and have well known names.
If more than ten mocap sequences are considered, we repeat
the shape list, but change the colour.

Coordinated visualization
The value of coordinated views for analyzing data is well
studied in InfoVis (see [25] for a recent review). We make use
of coordinate visualization in order to allow user to quickly
determine the association between a skeleton and scatterplot
point by hovering over either of these elements. Hovering
over a scatterplot point causes a red circle to be drawn
on the ground plane around the associated skeleton. A red
circle is used to indicate the associated skeleton since red
has good contrast with both the floor and background and
the circle encompasses the skeleton without obstructing one
from visualizing its motion. When the user hovers over a
skeleton a red circle is drawn below it and the associated
scatterplot point is surrounded by a black square (see Figure
7). Selecting a skeleton can be challenging when it is in motion
and thus we have decided to indicate a successful selection by
drawing the red circle. A black square is used to indicate the
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associated scatterplot point as the square will be preattentively
processed since it is the only square within a collection of
circles ( [9], Chapter 5). In practice, it is often useful to use
hovering even if shape encoding is turned on, since it is faster
to hover the mouse over a point or skeleton than to search for
corresponding shapes.

Skeletal view layout
An important design decision is how to layout skeletons
within the skeletal view. We have opted for the circular
pattern illustrated in Figure 15, as it maximizes the number of
skeletons that can be visualized within the skeletal view. An
alternative that we considered was to layout skeletons along
lines of a fixed length. Once a line was filled, a new line would
be started either behind or in front of the previously filled
lines. Although this layout is simpler in many respects, it is
difficult to select a suitable line length. If the line length is too
small, too many lines will be required when a large number of
skeletons is selected. If the line length is too large, it becomes
difficult to see all the skeletons at once. The circular layout
pattern avoids the need to decide on a suitable line length and
is optimal in the sense that it allows as many skeletons as
possible to be visualized at a given zoom level.

The spacing between skeletons is set large enough that
they will not interfere with each other when skeletons are
constrained to their initial position. The spacing of our tiled
floor reflects this spacing so that skeletons are laid out at the
corners of the tiles. This is visually pleasing and aids the user
in establishing where a skeleton will be placed next.

Fig. 15. Skeletons are laid out in the counter-clockwise
spiral pattern indicated by the arrows. This layout pattern
can support a large number of skeletons within a small
area.

6.3 Motion map view
It is often inconvenient to visualize more than a few mocap
sequences in the skeletal view since skeletons begin to oc-
clude each other. We have developed the motion map view
in order to support the visualization of large numbers of
mocap sequences. This view uses the same visual encodings,
coordination techniques, and layout algorithm as the skeletal
view, except skeletons are laid out in the xy plane instead of
the xz plane in order to ensure they never occlude each other
(see Figure 8). The major limitation of this motion map view
is that all skeletons are constrained to a single point in space
which can make visualizing their motion less natural than in

the skeletal view. As discussed in Section 3.2, this limitation
can be partially overcome by turning on path tracing.

Navigation model
Navigation in the motion map view uses a multi-view, world-
in-hand navigation model. Each skeleton is governed by a
world-in-hand model where the centre point of the world
corresponds to the root node of the skeleton. These world-
in-hand models are linked in the sense that all rotations
and translations are applied uniformly to the skeletons. This
facilitates the comparison of motions since all skeletons are
viewed from the same viewpoint. Like the skeletal view, a
number of common predefined views are provided (see Figure
16).

6.4 Dissimilarity matrix view
The dissimilarity matrix view complements the skeletal and
motion map views by providing a quantitative method for
exploring the relationship between scatterplot points on both a
local and global scale. A dissimilarity matrix for the selected
scatterplot points is given in the top section of the view. This
dissimilarity matrix can be used to quickly gain a quantitative
understanding of the relationship between the selected points.

The dissimilarity range control in the bottom section of this
visualization allows a range of dissimilarities to be selected. A
line will then be drawn between all pairs of points that have a
dissimilarity within the selected range, as shown in Figure 17.
The colour of a line indicates the dissimilarity between a pair
of points as specified by the colourmap. This control allows
global information about the dissimilarity between clusters to
be quickly determined.

Coordinated visualization
Tight coupling between the dissimilarity matrix view and
the scatterplot view allows a user to rapidly gain a more
quantitative understanding of the relationship between pairs
of points. Hovering over a point in the scatterplot view causes
the row associated with this point to be highlighted. Selecting a
cell in the dissimilarity matrix causes a line to be immediately
drawn between the two points corresponding to this cell and
causes all points which are not selected to fade into the
background (see Figure 9).

Colourmap selection
Care should be taken when creating a colourmap to ensure it
will produce perceptually meaningful results. Here we make
use of a colourmap consisting of desaturated colour for two
reasons. First, the number of lines drawn for a given user
selected dissimilarity range is often large which causes large
portions of the scatterplot view to be filled by lines. Tufte [26]
recommends the use of desaturated colours for large regions.
More specific to our environment, is that these colours are
distinct from those used to encode the motion classes. This
makes it easy to distinguish scatterplot points from lines.

Currently, our colourmap has not been designed to be
perceptually uniform. This would be a desirable improvement
we plan to incorporate in a future version. We are also
considering the use of a segmented colourmap.
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Fig. 16. Predefined views (excluding isometric view) supported by the motion map view. A multi-view, world-in-hand
navigation model is used to facilitate the easy comparison of motions. Notice that in the top view, the top of all skeletons
are shown as opposed to just the top row of the 4x3 grid as would be the case in a standard world-in-hand navigation
model.

Fig. 17. The dissimilarity matrix view can be used to gain a better understand of both the global and local structure of
the scatterplot view. A dissimilarity matrix corresponding to the selected scatterplot points is given in the top section of
the dissimilarity matrix view, which indicates the dissimilarity between all pairs of selected points. This view can also
be used to gain an understanding of the global relationship between pairs of points. This is accomplished by using
the dissimilarity range control to select a range of dissimilarities. In this example, the user is visualizing all pairs of
points that have a dissimilarity between 0 and 55 and has successfully established which jumping mocap sequence is
closest to the outlier jumping sequence highlighted in bright green.
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6.5 Implementation details

MotionVis has been implemented in C++ and makes exten-
sive use of OpenGL4 and wxWidgets5 for implementing the
graphical user interface. We have taken advantage of two open
source mocap players, MotView6 and wxMotionViewer7, as an
initial codebase that supports loading and animating a mocap
file. This codebase has been extensively modified to suit our
requirements (e.g., to support the loading and animation of
multiple skeletons, to provide more computationally efficient
rendering of animations, to allow bone and joint colours to
be specified), but we are indebted to the authors of these
programs for their excellent work. MDS is performed using
the mdscale command provided in MATLAB8 which supports
classic, metric, and non-metric MDS.

The scatterplot, motion map, and dissimilarity metric views
have all been implemented by the author using OpenGL and
wxWidgets, whereas the skeletal view borrows heavily from
MotView and wxMotionViewer. The coordination between
the scatterplot and the details-on-demand views is solely
the work of the author. The author also implemented Li’s
similarity metric along with the code required to perform
motion normalization.

The Mocap files used for evaluating our system come from
the CMU mocap database. This database supports a number
of different file formats. Unfortunately, files are not provide in
Biovision’s BVH format, which is used by most commercial
and open source mocap players, including MotView and
wxMotionViewer. As such, we have made use of the freely
available Amc2Bvh program9, in order to convert Mocap files
in the CMU mocap database to BVH format. Unfortunately,
this program skips the lower-back joint when converting the
file. We have implemented code that corrects for this omission
and have notified the author of Amc2Bvh of this bug.

7 SCENARIOS OF USE

A number of scenarios of use are explored in this section.
We begin by illustrating the use of MotionVis for analyzing
the overall structure imposed on a mocap database. Use of
MotionVis for understanding outliers is than discussed. We
then consider the effects of different motion normalization
methods on Li’s similarity metric before discussing our pro-
posed extension, which considers joint velocities.

7.1 Analyzing the overall structure

The overall structure imposed on a mocap database by a
similarity metric can be largely understood using just the
scatterplot view along with the features that operate on this
view. Upon loading MotionVis, the scatterplot view is set to
its default viewpoint which guarantees all points are visible.

4. www.OpenGL.org
5. www.wxWidgets.org
6. www.cs.wisc.edu/graphics/Courses/cs-838-

2000/Students/gardner/motView/
7. cgg.ms.mff.cuni.cz/~semancik/research/wxmv/index.html
8. www.mathworks.com
9. vipbase.net/amc2bvh/

Figure 13 is used to illustrate investigating the overall structure
with MotionVis.

A user should begin by checking the stress of the visualiza-
tion. In this example, the stress is 0.078 as indicated on the
status bar. This is small enough that the visualization will be
an accurate representation of the dissimilarity matrix.

From the default scatterplot view it is immediately notice-
able that the similarity metric does a good job of clustering
jumping (green) and cartwheel (gray) mocap sequences. How-
ever, it clearly cannot distinguish between walking, running,
and boxing sequences. We can further investigate the global
structure by clicking on the running button which ensures
all points corresponding to running mocap sequences will be
made visible as illustrated in Figure 13. This indicates that
although the similarity metric has trouble distinguishing be-
tween running and walking sequences, the running sequences
do form a tight cluster that overlaps only the top of the walking
cluster.

It could be that the walking sequences near the top of
the walking cluster correspond to walking motions that are
in some sense similar to running (for example, people walk-
ing briskly). This can be investigated by exploring different
walking subclasses as shown in Figure 13. Unfortunately, this
investigation indicates that in fact the mocap sequences which
overlap with the running sequences are from a diverse set of
subclasses such as “walking, 90-degree right turn” and “slow
walk, stop”.

A good practice is to consider the scatterplot visualization
produced by the other MDS embedding techniques to ensure
these same conclusions hold (see Figure 17 for the scatterplot
produced by metric MDS). When the stress is low (as is the
case here), it is extremely unlikely that different conclusions
will be drawn from these alternative visualization. However,
when the stress is high, more care must be taken.

In this example, examining the other scatterplot visualiza-
tions will simply confirm the user’s previous conclusions.
Depending on the application, this similarity metric may
be reasonable and the user will begin to study the local
structure resulting from the metric. If this global structure is
unacceptable, the user may either select a new metric or start
to investigate the local structure in order to try and gain a
deeper insight into the current metric with the hopes of being
able to improve it.

7.2 Analyzing outliers

Investigating outliers often given valuable information about
a similarity metric. In this example, we will consider the sole
jumping sequence that is located near the cluster of cartwheel
mocap sequences as shown in Figure 17. It is useful to begin
investigating an outlier by visualizing its mocap sequence in
the skeletal view. This allows the user to become familiar with
the exact nature of the mocap sequence. In this example, the
mocap sequence is notable because it consists of a person that
not only jumps up and down, but also hops on one foot. By
selecting the “jump up and down, hop on one foot” subclass
the user can quickly determine that this is the only jumping
sequence of this nature.
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At this point, a deeper investigation of the outlier can be
performed using the dissimilarity matrix view. By selecting
points near the outlier, local structure information can be
quickly obtained using the dissimilarity matrix. Hovering the
mouse over a point causes the row corresponding to this
point to be highlighted. In the example given in Figure 17,
it can easily be determined that the dissimilarity between
the outlier and the cartwheel mocap sequences is between
0.38 and 0.48. Furthermore, it can be determined that the
range of dissimilarity between the cartwheel motions is 0.05
to 0.29. The dissimilarity range control can then be used to
establish that the jumping sequence closest to this outlier has
a dissimilarity of 0.54.

The user has discovered that the reason for this jumping
sequence being an outlier is related to it being the sole jumping
sequence where the person hops on one foot. Although it is
true that under this similarity metric this jumping sequence
is more similar to the cartwheel motions sequences than any
jumping sequence, the user has also established that it is
not really a member of either cluster. The closest cartwheel
sequence has a dissimilarity of 0.38 whereas the largest
dissimilarities between any two cartwheel motions is only
0.29. The unique nature of this jumping sequence has caused
it to be relatively dissimilar to all other mocap sequences.

7.3 Analyzing motion normalization methods
It is important to realize that the investigation performed in
Section 7.2 was performed under a specific similarity metric
and motion normalization method. Let us assume the goal of
the user is to be able to distinguish the jumping and cartwheel
sequences from the other mocap sequences. In this case, it
may be reasonable to use the Fxz,β normalization methods as
opposed to the Fxyz,αβγ method considered above. Relaxing
the constraint on the y-axis should cause jumping sequences
to form a strong cluster since they are the only motion class
that exhibits significant movement along this axis.

As indicated in Figure 18, using the Fxz,β normalization
method does cause the jumping mocap sequences to form
a tight cluster (including the outlier investigated in Section
7.2). The cartwheel sequences also form a unique cluster.
Surprisingly, there is a single running mocap sequence near
the jumping cluster. Figure 19 shows this running sequence
in the motion map view. Notice that it is floating above the
ground. This explains why it is near the jumping cluster, but
more importantly indicates it is an erroneous motion file that
needs to be corrected.

7.4 Analyzing the joint velocity similarity metric
The above scenarios of use have all used Li’s similarity metric.
In this section, we consider a simple alternative to Li’s metric
that uses joint velocity instead of joint position (see Section 4.4
for details). A significant limitation of Li’s similarity metric
is that it does not distinguish between walking and running
mocap sequences. A significant source of variation between
these mocap sequences is the rate at which joints move. For
this reason, we hypothesize that our velocity-based metric will
allow these motion classes to be distinguished.

Fig. 19. An erroneous running sequence discovered
using MotionVis.

Figure 20 shows the resulting scatterplot views for our
velocity-based metric under a number of different motion
constraints. As can be seen, it is not able to distinguish
between walking and running motions. MotionVis allows this
failure to be determined within seconds and, if desired, would
allow the user to start investigating why the expected results
were not obtained.

8 DISCUSSION

In this section, we begin by discussing the strengths of the
proposed environment along with its limitations and some
potential future extensions. We then explore the possibility
of extending MotionVis into a general-purpose visualization
environment for analyzing similarity metrics.

8.1 Strengths

The goal of this project is to design and develop an interactive
environment to aid in the rapid understanding of the structure
imposed on a mocap database by a given similarity metric.
This goal has largely been achieved by taking advantage of
established InfoVis practices:
• Visual encoding: we make use of visual encoding to

allow motion (sub)classes to be quickly identified in both
the scatterplot, skeletal, and motion map views. This
is particularly powerful in the scatterplot view where
the global structure imposed on a mocap database by a
similarity metric can be quickly understood as illustrated
in Section 7.1. In addition, shape encoding allows a
user to quickly establish the association between selected
scatterplot points and mocap sequences in the details-on-
demand views.

• Details-on-demand: the skeletal and motion map views
allow for the direct visualization and comparison of
mocap sequences. The dissimilarity matrix view allows
the dissimilarity between pairs of mocap sequences to be
quickly understood on both local and global levels.

• Coordinated views: tight coupling between the scatterplot
and details-on-demand views allows the user to quickly
gain a deep understanding of the local structure in the
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Fig. 18. Structure of the database under the Fxz,β normalization method. Notice how tightly clustered the jumping
mocap sequences are since they are the only motion class with significant movement along the y-axis.

Fig. 20. The resulting scatterplot views for a velocity-base similarity metric designed to distinguish between walking
(red) and running (blue) mocap sequences. MotionVis allows a user to quickly determine that this metric does not
meet its design goals regardless of the motion normalization method used.
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scatterplot view. As demonstrated in Section 7.2 this
coupling allows for the rapid investigation of outliers.

8.2 Limitations and future work

Here we discuss a number of limitations which will be ad-
dressed in the near future along with some inherent limitations
of the proposed environment.

The most significant omission in the current implementa-
tion is that shape encoding has not been extended to the
dissimilarity matrix view. Ideally, the rows and columns of
the dissimilarity matrix should indicate not only the name
of the selected scatterplot points, but also the shape used to
encode them. This would make associating scatterplot points
with rows and columns much easier and natural. We have left
this as future work due to limitations in wxWidgets, which
makes this a rather time consuming feature to implement.

As discussed in Section 6.4, the colourmap in the dissim-
ilarity matrix view is not perceptually uniform. We plan to
make use of a perceptually uniform colourmap in the future
and are considering if it would be advantageous to also make
the colourmap segmented.

Currently, MotionVis supports a number of predefined mo-
tion normalization techniques. A more flexible approach would
be to allow the user to select which positions and rotations they
wish to constrain along with whether this should be applied
to each frame or only once. This would allow all possible
normalization methods to be explored.

MotionVis is designed to allow key aspects of a similarity
metric to be quickly understood. We have demonstrated our
system using Li’s similarity metric along with a simple exten-
sion of this work. It is our intent to analyze other similarity
metric using MotionVis in order to discover and address
weaknesses in the current design.

An inherent limitation of the proposed environment is
dealing with dissimilarity matrices that have an intrinsic di-
mensionality greater than 2. For such matrices, it will not
be possible to visualize their structure using a 2-dimensional
scatterplot. There are two notable options for addressing this
limitation. The first is to provide alternative visualization to
the scatterplot view, such as a scatterplot matrix or parallel
coordinates view, that would permit the visualization of more
than 2 dimensions. Another approach is to modify the mocap
database being considered. Ideally, we would like to visualize
the entire database in order to maximize the information
available for understanding a similarity metric. However, when
necessary, we could gain information about the similarity
metric by considering different subsets of the mocap database
that are suitable for visualizing with a single 2-dimensional
scatterplot.

A similar limitation is the scalability of the proposed
environment. For mocap databases with thousands instead of
hundreds of mocap sequences, the proposed environment may
prove to be insufficient since the scatterplot view will quickly
become challenging to understand. This could be addressed
by considering only a small subsets of the database at any
one time. This is reasonable, but care must be taken to
select subsets that will reveal useful structural information.

Alternatively, the scatterplot view could be extended to support
interactive filtering in order to reduce the complexity of the
visualization.

8.3 SimilarityVis: analyzing similarity metrics
Given the prevalence of similarity metrics used in the natural
and applied sciences, a general environment for analyzing
similarity metrics would be of great value. MotionVis demon-
strates that a well-designed visualization environment does
allow key aspects of a similarity metric to be determined. We
believe the general framework of MotionVis, as illustrated in
Figure 1, is suitable for any data type. That is, the structure of
a database under a given similarity metric can be visualized
using a scatterplot created by applying MDS to a dissimilarity
matrix. Key aspects of the similarity metric can then be
discovered by investigating the global and local structures
imposed on the database by the similarity metric.

The following major issues would need to be addressed
in order to create a generalized environment for analyzing
similarity metrics:
• Adaptive scatterplot view: the scatterplot view should au-

tomatically reflect the database being considered. Specif-
ically, it must encode the different classes within the data
using a suitable visual variable. This encoding should
allow the global structure between different classes and
subclasses to be easily understood. It should also contain
a notion of guaranteed visibility and would benefit from
providing different means to filter the data.

• Customized details-on-demand views: details-on-demand
views that are customized to the data type are necessary
for rapidly understanding the local structure in a scatter-
plot view. An architecture would need to be established
that allows custom views to be easily incorporated into
the visualization environment. Ideally, these views should
be constructed by individuals with an understanding of
InfoVis principles.

• Plug-in architecture for similarity metrics: an architecture
should be established that allows different similarity met-
rics to be considered without requiring the user to have
more than a superficial understanding of the visualiza-
tion environment’s codebase. In contrast, creating custom
details-on-demand views would require an understanding
of the API provided by the visualization environment.

9 CONCLUSIONS
A wide range of similarity metrics have been developed for
comparing mocap sequences. This paper specifies the design
of an interactive environment for analyzing mocap-based sim-
ilarity metrics. We justify the design of our environment by
examining a number of scenarios of use and by relating our
design decisions to well-establish InfoVis practices. By tightly
coupling a scatterplot view that indicates global structure with
a number of details-on-demand views, our environment allows
for the rapid understanding of the structure imposed on a
mocap database by a given similarity metric. Understanding
this structure provides the user with key insights into their
similarity metric that are difficult to obtain using existing
visualization environments or by analyzing numerical results.
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APPENDIX A: COLOUR BLINDNESS EVALUA-
TION

Approximately 5% of the population suffers from some form
of colour blindness. We have designed MotionVis to be usable
by these individuals. The MotionVis interface as perceived by
a person with deuteranope or protanope colour blindness are
given in Figures 21 and 22, respectively. These images were
created using VisCheck10.

10. www.vischeck.com
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Fig. 21. MotionVis interface as perceived by a person with deuteranope colour blindness.

Fig. 22. MotionVis interface as perceived by a person with protanope colour blindness.


