
Scaling Up Radial Graph Layouts

Cody Robson

University of British Columbia

ABSTRACT

The  well-known  radial  graph  layout  technique  has  plenty  of 
advantages for graph visualization and graph exploration, but is 
quite  limited  in  the  size  of  graphs  it  can  display  effectively 
because the layout is inherently global and allows far away or out 
of  view  nodes  to  distort  the  focus  region.   The  primary 
contribution of this project is to introduce sub tree clustering to 
allow the layout algorithm to run locally and provide a visually 
pleasing focus region regardless of the overall graph size.  This 
solution  builds  upon  an  existing  radial  graph  visualization 
technique  published  in  Yee  et.  al.'s  Animated  Exploration  of  
Graphs with Radial Layout published in Proc. InfoVis 2001.  In 
addition  to  clustering,  other  common  information  visualization 
techniques are added to Yee et. al.'s solution to further aid with 
graph navigation and visualization as the graph size increases.
KEYWORDS: Graph exploration, radial layout.

1 INTRODUCTION

 The focus of this project is to provide extensions that aid in the 
scaling of the radial graph layout algorithm.  Radial graph layouts 
emphasize shortest path distances from a central focus node to all 
other  nodes  in  the  graph  by  placing  nodes  on  layout  rings 
emanating  from  the  center  of  the  graph.   First,  the  layout 
algorithm performs a breadth first search from a primary or focus 
node  to  all  other  nodes  in  the  graph  (which  must  be  a  single 
connected component).  Using this tree, it first places 

the  focus  node,  now the  root  of  the  tree,  in  the  center  of  the 
canvas, at the zero ring.  It then partitions the radians of the first 
ring, some determined radius away from the center, amongst the 
root's children based on the span, or number of leaf nodes, in each 
of their sub trees.  The algorithm then recursively partitions each 
of the children node's slice of the next layout ring amongst its 
children.  This encoding allows a user to determine path distance 
from any node to the focus just by observing which ring a given 
node is placed on.  Furthermore, sub trees will ideally be spread 
out as well as possible since their allocation space is proportional 
to  their  span.   Additionally,  sub  trees  and  their  edges  are 
guaranteed to not  intersect one another because each child node 
isn't allowed out of its allocated range of radians.

This type of layout is ideal for data for which the shortest path 
between  two nodes  is  the  most  important,  and  other  paths  are 
relevant only for context. Datasets for which this is advantagous 
are things like network data, where connections would be routed 
through the  shortest  path,  and alternative  paths  are  meaningful 
only in the event of a log jam or network outage. In order to easily 
judge distances between two non-focus nodes the user must select 
one of them to be the new focus node and the layout algorithm 
must be rerun.  

As will be described in detail later, this layout can scale well 
under certain circumstances but gives very poor layouts for focus 
areas  in  tree-like  or  sparsely  connected  sub  regions  of  large 
graphs.   Ideally,  this  layout  technique  should  work  on  a  local 
neighbourhood  around  the  focus  node  and  not  be  negatively 
effected by large number of nodes far away from the focus region. 
This  is  the  primary  intuition  behind  sub  tree  clustering,  a 
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technique that hopes to allow radial graph layout to scale beyond 
small well-connected graphs.

2 PREVIOUS WORK

Radial  graph  layout  is  only  one  of  many  tree-based  layout 
algorithms.   Some tree  placement  algorithms utilize  hyperbolic 
geometry in order to handle large tree or graph sizes [5][7].  These 
types  of  methods  do  not  recompute  the  layout  when  the  user 
changes  their  focus,  and  instead  allows  the  user  to  pan  in 
hyperbolic space.  NicheWorks [10] is a large scale graph layout 
technique that was derived from a radial graph layout, and gives 

excellent details about the calculation of the original radial graph 
layout  properties.   The  final  implementation  is  not  a  direct 
application of radial graph layout but more of an evolution.

Choosing  a  layout  algorithm  is  very  much  dependant  on  a 
perticular  dataset,  and if  my project was specific to a dataset I 
would have  most  likely  chosen more than one different  layout 
techniques to compare and contrast  with my data.  However,  I 
have decided to take a technique-driven approach and start with a 
recent radial graph layout solution and extend it to deal with larger 
datasets.

A recent  notable  radial  graph layout  solution is  Yee et.  al.'s 
Animated Exploration of Graphs with Radial Layout [12] which 
promotes  the  use  of  animated  focus  node  transitions,  using 
interpolation of polar node coordinates and traditional animation 
techniques.   They also apply some useful  layout  constraints  to 
allow for minimal graph layout changes between focus transitions. 
As  mentioned  in  their  paper,  their  solution  requires  a  node 
aggregation technique of some kind if it is to do a good job of 
visualizing  large  graphs.   My  solution  intends  to  provide  a 
possible node aggregation technique, which I will refer to as sub 
tree clustering, to allow radial graph layouts to apply to arbitrary 
sized graphs while maintaining the visually pleasing radial layout 
in the rings around the focus region.

3 DESCRIPTION OF PROBLEM

The  radial  graph  layout  utilizes  the  entire  graph  when 
determining even the first of the root node's children's available 
space.  For very well connected graphs or mesh-like data, the sub 
trees of the root's first few generations of children will likely be 
quite balanced, leading to a very pleasing graph layout.  However, 
in the event that much of the rest of the graph is only accessible 
through one of the the root's children, that child's allocated space 
is  going  to  comprise  of  the  majority  of  the  available  space, 

Figure  1: A radial placement diagram from [10].  Notice 
sub tree S is  given half  of the available canvas, which it  
divides up amongst its children nodes based on the span of  
their sub trees.

Figure 2: Traditional radial graph layout of a tree near a leaf node.  Notice 
all the nodes on the first three rings, the focus region, are constrained to a 
straight line, giving the user a poor layout for the region that their focus node 
is implying they care most about.

Figure  3: Sub tree clustering without  re-running the layout algorithm does 
little  to  prove  the  poor  placement  of  the  first  few generations  of  children 
nodes.



smashing the rest of the root's children into a very small sliver of 
radians  in  the  first  few  rings  and  allowing  children  of  the 
aforementioned bottleneck node to sweep across the rest  of the 
graph and consume the majority  of  canvas space,  regardless  if 
they are very far away from the root via traversal (figure 2).

This phenomena is best visualized in a small tree, which is not 
itself a contrived example because many generic graphs will have 
subregions which are trees.   By having the radial  graph layout 
algorithm run on tree data and traversing one's way to a leaf node 
or  node  a  few jumps  away  from a  leaf  node,  this  unpleasant, 
unbalanced partition effect becomes apparent (figure 2). Because 
the root's  children that lead to the tree leaves will  have a very 
small  span,  they  are  allocated  a  minuscule  radial  slice  in 
comparison to the root's bottleneck child, which will lead to the 
entire rest of the graph.  In addition to trees, a sub graph with one 
edge  to  another  sub  graph  will  invoke  this  same  unbalanced 
partitioning.   Because  the  breadth  first  search  involved  in  the 
layout builds a tree out of the data, only one sub tree connected to 
the focus node will be able to claim the entire sub graph because it 
was the node with the shortest distance to that single isthmus-like 
edge.

The solution must in some way allow for the layout of the focus 
region,  or  the first  few rings  around the centre,  to  be laid  out 
independently from the rest of the graph, most of which will not 
even be visible to the user (figure 3).

Beyond  poor  layouts,  as  graph  size  increases,  a  single-jump 
transition from one node to another becomes harder and harder for 
a user to visually grasp.  Animation techniques utilized in Yee et. 
al.'s radial graph visualization work very well for nodes that are in 
the user's field of view, or even just  beyond it.   Once the new 
focus node becomes far outside the viewing window, however, 

layout  constraints  and  slow-in/slow-out  animation  will  not  be 
enough support for the user to mentally parse the rapid flow of 
possibly thousands of nodes across the screen at one time.  As 
proposed in [12], a large transition must be broken up into smaller 
user-friendly chunks that are easily to follow in succession.

4 DESCRIPTION OF SOLUTION

My  program  builds  upon  Yee  et.  al.’s  program  description, 
including the features their solution implemented to best support 
focus transitions as well my own extensions to aid with graph size 
scaling.  The key feature of their solution that became the baseline 
for  my  program  was  the  slow-in/slow-out  polar  coordinate 
interpolation of nodes between layouts.  The general premise is 
that linear interpolation of Cartesian coordinates caused quite a bit 
of  crossover  among  nodes  during  layout  transitions.   By 
interpolating  polar  coordinates,  nodes  and  sub  trees  will  glide 
along the layout rings and be less likely to cross paths with each 
other.  Furthermore, traditional animation techniques like slow-in/
slow-out movements provide the user with useful motion cues, so 
that they are well situated to mentally process moving nodes as 
they begin to move faster.  Their paper was quite convincing that 
these properties best allowed the user to keep track of their current 
location in the graph during a focus transition, to the point that I 
felt these features should be enabled permanently.  

The  two  layout  constraints  talked  about  in  [12]  were  also 
implemented.   The first  constraint enforces  that  a focus node’s 
edge to its previous parent node is maintained in the new layout. 
This will reduce unnecessary and arbitrary rotations.  The second 
constraint  forces  nodes  to  maintain  the  order  of  their  children 
nodes.  For tree graphs, this is not very hard to enforce, but in 
radial layouts, non-tree neighbour nodes become child nodes and 
vice versa.  Keeping this constraint reduces the amount of child 
node travel  from one layout  to  another.   Children will  still  be 
forced to travel large distances when the shortest path from the 
focus to the child node becomes rerouted through another parent 
node.

Among the features of Yee et. al.’s implementation I decided to 
omit from my solution were dynamic node addition and varying 
node sizes.  I felt these features were meant to compliment their 
file-sharing network data  and  had  no  implication  on  the radial 
layout technique itself.

Yee et.  al.’s own proposed extensions proved to be the most 
beneficial  of the new features added in my solution.  First  and 
foremost,  node  aggregation  or,  as  I  call  it,  sub  tree  clustering 
removes  the  single  biggest  obstacle  in  allowing  radial  graph 
layouts to scale up to graphs of hundreds or thousands of nodes. 
Since the graph layout is a tree, nodes at a given clustering ring 
can represent the entire sub tree of which that node is the root. 
More importantly, the radial node placement algorithm can take 
this  into  account  and  not  factor  in  clustered  sub  trees  when 
partitioning  the  available  space  (figures  2  and  3  illustrate  the 
layout algorithm ignoring or considering clustering).  This is the 
all-important  migration  from a  global  layout  to  a  local  layout 
needed to produce good results near the focus node as graph size 
increases.

Figure  4:  Once  the  layout  algorithm is  re-run  with  knowledge  of  the 
clustering level, the placement of nodes along the first few rings is much 
more visually pleasing.  This is a simplistic example, a typical user would  
most likely view more than 3 rings before invoking sub tree clustering.



The  second proposed  extension  in  [12]  is  intermediate  node 
transition steps or a  transition series  for large focus transitions. 
This is a much needed feature, as it becomes increasingly harder 
to follow the transitions as the distance between the old and new 
focus  nodes  increases.   Additionally,  if  the new focus  node  is 
currently  omitted  as  part  of  a  sub  tree  cluster,  a  single,  large 
transition to it will be nearly impossible for the user to track.  This 
transition  series  can  either  be  specified  by  jump  size  or  total 
number of jumps from beginning to end.

I included a few other visualization features to my solution to 
aid  with graph size scaling and the core graph visualization in 
general.   The inclusion of clustering made the need for fade-in 
fade-out  support  quite  apparent,  as  nodes,  edges,  clusters,  and 
labels materialize and vanish without warning.  By linearly fading 
these elements as they cluster and uncluster, the user is better able 
to track which nodes became members of which clusters during a 
focus transition.  Also, by making the amount of transparency a 
factor of the node's distance to the origin, the fade-in and fade-out 
rates  coincide  with  the  slow-in/slow-out  animation,  hopefully 
providing a similar visual cue.

Focus+context,  the  idea  of  introducing  distortion  to  a 
visualization technique in order to emphasize a focus region and 
include surrounding data mainly to provide context for that focus 
region,  is  a  very  important  principal  of  many  Information 
Visualization  solutions  and  is  very  easy  to  include  in  a  radial 
layout.   Normally,  the  distance  between  each  layout  ring  is 
constant,  but  by  instead  making  the  ring's  radii  grow 
logarithmically, more space is given between the first few rings 
and rings around the peripheral become closer together.   Being 
able to visualize the local neighbourhood around the focus is a 
large component of this layout technique, and this improves that 
aspect at the cost of pushing further away nodes closer together. 
However,  this disadvantage is marginalized by the inclusion of 
clustering,  which  would  omit  the  rendering  of  these  far  away 
nodes to begin with (figure 10).

Many InfoVis papers deal with the process of tying zoom to a 
pan  movement.   One  such  example  that  provides  an  excellent 
mathematical framing of this notion is [11].  The idea is that a 
system would have to pan less when it is zoomed out, in addition 
to allowing the user to see more of the dataset move slower and 
thus better keep track of their position in the dataset.  Since this 
application does no true panning per se, one could characterize a 
change in focus as closely related to a pan, as the user is moving 
across the dataset, just not in a traditional moving-camera/static-
world situation.  Because of this a zoom-on-transition feature was 
added that zooms out an amount relative to the distance between 
the  current  and  new  focus  nodes.   The  calculated  zoom  out 
amount  is  spread  across  the  transition  series  so  that  each  step 
slowly zooms out during the first half of the transition and zooms 
back in during the later half to return the user to their preferred 
zoom level.

The  rest  of  the  features  are  not  visualization  techniques  but 
rather  included to  make the final  result  as  visually  pleasing as 
possible (figure 5).  Node drawing has two available modes. One 
draws  nodes  as  low-cost  no-frills  coloured  squares  with  black 
outlines for programmable shader-impaired systems.  The other, 
intended for modern hardware, uses an impostor sphere billboard 
shader to draw the nodes as circles with per-pixel Phong-esque 
shading.  This allows the nodes to appear as perfect circles at all 
scales and still be rendered with only two triangles.  The shader 
requires the lowest subset of shader abilities, Shader Model 1.0, 
so any card supporting the OpenGL Shading Language (GLSL) 
should be capable of its execution.

The other aesthetic feature is the inclusion of anti-aliased text 
labels for each of the nodes.  These labels are placed just below 
each node, and a collision detection process runs a axis-aligned 
bounding-box check on each label to find intersections and hide 
labels of lesser priority (i.e. further away from the center) so that 
the user never has to decipher overlapping characters.  Because 
the user is allowed to rotate the graph at any time, this bounding 

Figure 5: Aesthetics of node rendering.  The imposter sphere will have a 
crisp circular edge regardless of zoom level.  The anti-aliased FTGL text  
label also appears smooth.

Figure  6: Nodes and clusters fade in and fade out as nodes interpolate  
between the cluster ring (in  this  case,  the first ring) and the first ring 
beyond it.



box calculation has to be run many times and therefore it is best to 
utilize  multithreading  so  that  a  decent  frame  rate  can  be 
maintained.

5 THIRD PARTY SOFTWARE

I chose to do all the rendering in OpenGL[4] and its associated 
shading language, GLSL, because of its speed and flexibility.  The 
imposter sphere shader is compatible with Shader Model 1.0 or 
newer video cards.  I had done previous work with the FLTK [3] 
windowing tool kit and decided to use it again because of its light 
weight,  C++ implementation,  and  easy  to  use  wysiwyg editor. 
Both supported file formats are XML based (GraphML and the 
InfoVis 2003 Contest tree data files), and parsed with the IrrXML 
[2] library, the stand-alone XML-reader associated with the open-
source Irrlicht game engine [1].  There exist a plethora of font 
rendering  libraries  for  OpenGL,  and  I  chose  FTGL [6]  for  its 
support for nice-looking anti-aliased TrueType fonts and OpenGL 
display lists.  All other aspects of the program were implemented 
from scratch and are described in the following section.

6 IMPLEMENTATION DETAILS

When a node is selected to become the focus (both by the user 
and for initial layout), a breadth-first search (BFS) determines the 
new  tree  layout.   Once  the  parent-child  relationships  are 
determined, the span of each node is computed and starting at the 
root,  the radians of the circle are divided amongst the children 
nodes based on the span of their sub trees.  Each node keeps track 
of their previous, current, and new ring value and orientation theta 
so  that  it  can  interpolate  the two positions during the slow-in, 
slow-out animation function.  The parent-child relationships must 
be determined with care.  Each node keeps a list of its neighbours 
and the subset  of  neighbours  deemed its  children.   In  order  to 
enforce  the  neighbour-ordering  constraint,  the  order  of  these 
children  must  be  consistent  when  children  nodes  transition  to 
neighbour nodes and neighbour nodes become children, an effect 
of a new focus finding a new shortest path to a given node based 
on the initial BFS.  This is done by examining the direction of the 
edges connecting the neighbouring nodes to the current node and 
ordering  them counter-clockwise  starting  at  the  current  node’s 
parent edge (or former parent edge in the case of the parent-less 
focus node).

The  animation  function  is  called  at  each  frame,  and  it  is 
responsible for updating the positions of all the nodes as well as 
the  current  zoom  level.   It  uses  a  quadratic  velocity  function 
multiplied by the time since the last frame to keep the transition 
times independent of frame rate.  In general, transitions about a 
second in length seemed to be a good trade off between providing 
the  user  adequate  motion  queues  and  waiting  too  long  for 
animations to  complete.   Since  the movement  of  each  node  is 
independent of all other nodes, this process could be threaded in 
the  event  the  number  of  nodes  becomes  exceedingly  large. 
However,  I  found  the  single-threaded  implementation  adequate 
for graphs in the hundreds of nodes.

The zooming is done in the animation function and is treated 
exactly  the  same  as  a  node  interpolating  two  positions.   The 
previous, current, and intended zoom levels are all tracked so that 
the  user  can  always  modify  the  intended  zoom  level  and  the 
zooming  speed  should  smoothly  change  to  accommodate  the 
larger or smaller zoom distance.  Zoom level is specified either by 
a user interface slider or by the mouse wheel.

If a transition path other than 100% is activated from the UI, the 
path of transitional nodes from the current focus to the new focus 
is saved as the transition series.   When the animation function 
completes  without  updating  any  node’s  position,  the  layout 
algorithm is called for the next node on the transition series.  If the 
zoom on transitions option is selected from the UI, an amount of 
unzooming is determined based on the current ring position of the 
new focus (the last node in the transition series).  Each node of the 
transition series  carries  with it  a  new zoom level  value,  which 
starts at the current zoom level and increases to the predetermined 
unzooming amount for the centre nodes and decreases back down 
to the current zoom level for the last node.

The nodes themselves have two rendering modes.  The first is a 
simple  coloured  square  with  a  black  outline,  done  in  two 
rendering passes.  A custom shader could be written to do this in a 
single  pass,  but  this  mode  was  included  to  support  shader-

Figure  7:  Red  outlines  illustrate  the  actual  rendered 
geometry as opposed to the perceived impostor sphere.

Figure  8: Available transition modes on 
the user interface.

Figure  9:  The  normal  map  of  a  
sphere.



incompatible environments.  The second mode draws an impostor 
sphere with Phong-esque shading.  The details of this approach 
were taken from QuteMol [9], a molecule rendering suite.  The 
process involves sending four vertices to the vertex shader at the 
centre of the sphere.  Each vertex's texture coordinates specify a 
corner of a billboard,  and once each vertex is transformed into 
normalized  device  coordinates  they  are  translated  into  their 
respective  corners  of  the  screen-aligned  square  containing  the 
impostor sphere.  In the fragment shader, pixels that fall outside 
the  radius  of  the  imposter  sphere  are  discarded,  giving  the 
imposter  a  pixel-perfect  circular  boundary  at  all  zoom  levels 
(figure 7).  Normals for the sphere are easily calculated because 
they can be solved given a pixel's distance to the impostor's centre 
(figure 9).  

Unlike  QuteMol,  the  impostor  rendered  in  this  program  is 
actually  a  billboard  (i.e.  the  depth  of  an  actual  sphere  is  not 
computed).   This  has  a  few implications.   First,  sphere-sphere 
intersections  will  appear  as  overlapping  circles  as  opposed  to 
intersecting three-dimensional shapes.  I felt this was appropriate 
as the nodes are meant as data points and their actual geometry is 
arbitrary.   Second,  the fragment  shader  becomes much shorter, 
allowing  for  faster  rendering.   Third,  the  specular  highlight 

component of the Phong shading model is a bit inaccurate, as the 
half-angle calculation requires the depth value at each pixel, hence 
I refer to the lighting as Phong-esque.  I felt the increase in speed 
outweighs the disadvantages to using billboards for this type of 
2D application, as the nodes themselves are simply meant to look 
nice at  all  scales and the subtleties of their  geometry are quite 
insignificant.

The lines representing tree and non-tree edges as well  as the 
layout rings are drawn with simple line strips.  Their colours were 
selected  to  imply  the  tree  edges  (dark  blue)  are  the  most 
important,  followed  by  the  non-tree  edges  (faded  green),  and 
lastly the layout rings (light grey) which could have been omitted 
altogether but were included to make the focus+context slider’s 
effects apparent.  The rings have two spacing modes, one linear 
and one logarithmic, deemed the focus+context mode, as it allows 
for much more space between the first few rings and diminishing 
space  between  distant  rings.   The  slider  on  the  UI  linearly 
interpolates between these settings.

Nodes beyond the UI-specified sub tree clustering ring are not 
drawn.   Instead a line or triangle is placed at  the node on the 

Figure 10: Results of radial graph layout with sub tree clustering.  Tree edges are drawn in blue, non-tree  
edges in green, and the layout rings in grey.  Clustering triangles are proportional to the sub trees they  
represent, or are drawn as lines for simple node chains.  The focus+context setting places the layout rings 
logarithmically away from the centre, but nodes become clustered before getting too close together.



clustering ring and is meant to inform the user how large the sub 
tree being hidden is relative to other hidden sub trees.  If the sub 
tree is a simple chain of nodes, a line is drawn instead.  The size 
of the triangle scales logarithmically with the span of the sub tree, 
and  transitions  will  very  commonly  combine  two  or  more 
clustered sub trees.  A linear relationship between the span of the 
sub tree and the triangle scale would result  in very,  very large 
triangles that would be most certainly be partially occluded  by the 
window border  and make visual  comparisons impossible.   The 
style  of  these  sub  tree  clusters  was  inspired  by  the  triangular 
previews of the SpaceTree [8] system (figure 11).

Despite the orthographic projection of the scene, the depth and 
ordering of  each object  had to  be chosen with care  for  proper 
alpha blending.  Clusters, nodes, and lines fade linearly between 
the  clustering  ring  and  the  first  ring  beyond  it.   Because  the 
velocity  of  anything transitioning between those two rings will 
slow-in  slow-out,  the  fading  effect  inherits  this  property 
automatically.

7 RESULTS

The largest improvement to the radial graph layout technique is 
the inclusion of sub tree clustering.  Enabling the layout algorithm 
to consider only nodes in a local neighbourhood at the focus, the 
resulting graphs  are  no longer  constrained to  tiny slices  of  the 
layout rings.  I believe this removes the hurdle that unbalanced 
tree-like sections imposed on the graph that made radial layouts 
incapable of scaling to graphs of larger than a few dozen nodes. 
Because the current layout is now local, the size of the underlying 
graph becomes only a problem of computational graph-traversal 
cost and not one of human perception.

While the the implementation of Yee et. al.'s solution without 
further extensions could possibly scale to large graphs, they would 
have to be well connected not contain any trees of more than a 
dozen or so nodes or sub graphs connected to each other by only a 
few edges.  Those scenarios produce unbalanced trees during the 
layout process making the focus region's layout consist  of very 
small angles between edges and edge lengths that span nearly the 
diameter  of  one  or  more  layout  rings.   Taking  clustering  into 
account  during  the  layout  process  relieves  this  focused  tree 
distortion and allows the graph size to be independent of the local 
tree layout algorithm at the focus.

Going along with clustering, the intermediate node transitioning 
allows for transitions of more than a few nodes at time without the 
user becoming lost.   For some data sets, the user may wish to 
follow the path from one node to another via a third node.  User-
specified paths would be an easy extension for an application that 

supports  a  focus  transition  series.   The  rest  of  the  additional 
features aid the users ability to visualize graph exploration, the 
central focus of Yee et. al.'s solution.  The domain best suited for 
this technique remains unchanged, being best for data which the 
shortest path from one node to another is the most important path 
and useful for the user to be able to visualize, leaving non-shortest 
paths drawn only for the sake of context.

8 FUTURE WORK

I believe the biggest strength of this system is that it opens the 
door to allow radial  layout of arbitrary-sized graphs, simply by 
making the layout algorithm local instead of global.  Additionally, 
navigation from one focus node to another is greatly improved 
when the user is able to digest smaller steps as opposed to one 
giant shift that may involve many nodes and sub trees changing 
parents and moving great distances.

Despite the gains in dealing with trees or sparsely-connected 
sub  graphs  that  sub  tree  clustering  enabled,  it  is  still,  in  my 
opinion, the biggest weakness of this approach.  The user would 
most  likely  want  to  view  many  rings  at  once,  leaving  the 
clustering  ring  many  jumps  away,  resulting  in  the  layout 
algorithm  considering  enough  nodes  to  stumble  into  the  same 
problems I hoped to avoid by using clustering in the first place.  In 
the  case  of  sparsely  connected  sub  graphs,  this  is  much  less 
pronounced, but in the case of trees, even a tree of only a couple 
dozen nodes, becomes enough to really distort the graph structure 
in the first few layout rings.  A balance between a balanced tree 
structure in the focus region and the ability to view nodes many 
rings away must be set by the user specific to their data, I just 
worry for some data sets this results in a focus region of too few 
rings to get enough context for the region around the focus node 
or enough rings for context but at the same time too many rings to 
be  considered  by  the  layout  algorithm to  properly  balance  the 
focus region tree. 

As  far  as  lessons  learned,  I  have  mixed  feelings  about 
implementing the  rendering  and graph  systems of  this  solution 
from scratch.  One one hand, reinventing the wheel can be fun at 
times and the ability to tailor everything to my problem and avoid 
sifting through mountains of documentation (or dare I mention the 
horrors  of  finding  bug  work-arounds  by  searching  community 
message boards!) can be quite nice.  On the other, time I spent 
reimplementing existing graph code could have been spent adding 
more features.  Additionally, support for lots of small features and 
file formats would most likely come for free had I started with a 
publicly available graphing system.

If given more time to work on this project the first feature I 
would have added would be to in some way highlight the path a 
multi-jump transition is taking to better cue the user for changes 
in direction.   There are cases when jumping even a handful of 
nodes at a time was simply too many and it became a lot of effort 
to keep up with the animation sequence.  Beyond that I  would 
have liked to try to branch out from traditional radial placement a 
bit, perhaps trying to incorporate other graphing techniques like 
curved edges or hyperbolic geometry that might have meshed well 
with this particular problem domain.
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