Lecture 7/8:

*Design & Justification Exercises, Beyond R*

Tamara Munzner
Department of Computer Science
University of British Columbia

*DSCI 532, Data Visualization 2*
Week 4, Jan 23 / Jan 25 2018

www.cs.ubc.ca/~tmm/courses/mds-viz2-17  
@tamaramunzner
Viz theory

• block feedback: many people not seeing value of lecture material
• module covers both visualization tooling/code and visualization theory
  – lectures: teach theory (assessed with both viz and reasoning)
    • are you coding the right thing?
  – tutorials: teach tooling/code
    • how to code it
  – lab 1: 25% mechanics, 49% code, 21% theory, 5% writing
  – milestone 1: 5% mechanics, 65% theory, 30% writing
  – milestone 2: 15% mechanics, 45% code, 38% theory, 2% writing
  – milestone 3: \(5+11=15\)% mechanics, 10% code, 75% theory
• today: in-class practice on theory to help you do well on milestone 3
  – bar is set considerably higher for milestone 3 than for milestones 1 & 2
    • now that more theory has been covered in class
How to handle complexity: 4 families of strategies

- Derive new data to show within view
- Change view over time
- Facet across multiple views
- Reduce items/attributes within single view

**Manipulate**
- Change

**Facet**
- Juxtapose

**Reduce**
- Filter
- Aggregate
- Embed

**Superimpose**
- Navigate
- Partition
- Select
- Change

**Derive**
- Partition
- Filter
- Aggregate
- Embed
- Superimpose
- Navigate
- Select
- Change
Scenario

• data: room occupancy rates
  – 1 room
  – occupancy measured every 5 min, duration 1 day
• task: characterize space usage pattern

• design
  • propose idioms (visual encoding, interaction)
  • justify idiom choice
Consider

• what’s the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?
Cardinality

• Marshall: 68 cities * 40 years * 4 crime types = 10,880
• Wine: 130K * 4 = 650,000
  – spatial (hierarchical), quantitative, categorical, free-form text
Scenario

• data: room occupancy rates
  – 20 rooms
  – measured every 5 min, duration 1 day

• task: compare space usage patterns between rooms

• design
  • propose idioms (visual encoding, interaction)
  • justify idiom choice
Consider

• what’s the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?

• what are trade-offs between
  – filtering to see one chart at a time
  – showing all side by side with small multiples
  – superimposing all on top of each other
Scenario

• data: room occupancy rates in building
  – 1 building: 200 rooms across 4 floors
  – measured every 5 min, duration 1 day
  – time series + floor plans

• task: characterize space usage patterns
  – trends, outliers

• design
  – propose & justify idioms
Consider

• what’s the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?
• what are trade-offs between
  – filtering to see one chart at a time
  – showing side by side with small multiples
  – superimposing on top of each other

• multi-scale structure to exploit? aggregate, zoom, slice/dice, filter?
Scenario

• data: room occupancy rates in building
  – 1 building: 200 rooms across 4 floors
  – measured every 5 min, duration 1 year
  – time series + floor plans + room sizes

• task: characterize space usage patterns
  – trends, outliers

• design
  – propose & justify idioms
Consider

• what’s the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?
• what are trade-offs between
  – filtering to see one chart at a time
  – showing side by side with small multiples
  – superimposing on top of each other
• multi-scale structure to exploit? aggregate, zoom, slice/dice, filter?
• can you normalize the data? should you - always vs on demand?
• how to handle multi-scale space and multi-scale time?
Design Choices
(Additional Context)
Normalized vs Absolute
Idiom: choropleth map

• use given spatial data
  – when central task is understanding spatial relationships

• data
  – geographic geometry
  – table with 1 quant attribute per region

• encoding
  – use given geometry for area mark boundaries
  – sequential segmented colormap [more later]
  – (geographic heat map)

http://bl.ocks.org/mbostock/4060606
Population maps trickiness

• beware!
• absolute/counts vs normalized/relative
  • population density vs per capita
• investigate with Ben Jones Tableau Public demo
  • http://public.tableau.com/profile/ben.jones#!/vizhome/PopVsFin/PopVsFin

Are Maps of Financial Variables just Population Maps?

• yes, unless you look at per capita (relative) numbers

[https://xkcd.com/1138]
Idiom: Bayesian surprise maps

• use models of expectations to highlight surprising values
• confounds (population) and variance (sparsity)

[Surprise! Bayesian Weighting for De-Biasing Thematic Maps. Correll and Heer. Proc InfoVis 2016]

Radial vs Rectilinear
Axis Orientation

- Rectilinear
- Parallel
- Radial
Idioms: **radial bar chart, star plot**

- **radial bar chart**
  - radial axes meet at central ring, line mark

- **star plot**
  - radial axes, meet at central point, line mark

- **bar chart**
  - rectilinear axes, aligned vertically

- **accuracy**
  - length unaligned with radial
    - less accurate than aligned with rectilinear

---

Radial Orientation: Radar Plots

LIMITATION: Not good when categories aren’t cyclic

[Slide courtesy of Ben Jones]
"Diagram of the causes of mortality in the army in the East" (1858)

[Slide courtesy of Ben Jones]
“Radar graphs: Avoid them (99.9% of the time)”


[Slide courtesy of Ben Jones]
**Idiom: glyphmaps**

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns

---

Radial orientation

• perceptual limits
  – polar coordinate asymmetry
    • angles lower precision than lengths
    • frequently problematic
    • sometimes can be deliberately exploited!
      • for 2 attribs of very unequal importance

Overview first, zoom and filter, details on demand

• influential mantra from Shneiderman


• overview = summary
  – microcosm of full vis design problem
Thursday

• Beyond R
  – Ana on broader landscape
  – Ana on direct comparison of Tableau to R
  – Vaden on python interactive tools

• Evaluations

• Further Design & Justification Exercises

• Next Steps
Evaluations
Viz theory

- block feedback: many people not seeing value of lecture material
- module covers **both** visualization tooling/code and visualization theory
  - lectures: teach theory (assessed with both viz and reasoning)
    - are you coding the right thing?
  - tutorials: teach tooling/code
    - how to code it
- lab 1: 25% mechanics, 49% code, 21% theory, 5% writing
- milestone 1: 5% mechanics, 65% theory, 30% writing
- milestone 2: 15% mechanics, 45% code, 38% theory, 2% writing
- milestone 3: 5+11=15% mechanics, 10% code, 75% theory

- today: in-class practice on theory to help you do well on milestone 3
  - bar is set considerably higher for milestone 3 than for milestones 1 & 2
    - now that more theory has been covered in class
How to handle complexity: 4 families of strategies

<table>
<thead>
<tr>
<th>Derive</th>
<th>Manipulate</th>
<th>Facet</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change</td>
<td>Juxtapose</td>
<td>Filter</td>
</tr>
<tr>
<td></td>
<td>Select</td>
<td>Partition</td>
<td>Aggregate</td>
</tr>
<tr>
<td></td>
<td>Navigate</td>
<td>Superimpose</td>
<td>Embed</td>
</tr>
</tbody>
</table>

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view
Scenarios last time

- 1 room, occupancy every 5 min over 1 day
- 20 rooms, occupancy every 5 min over 1 day
- 200 rooms across 4 floors, occupancy every 5 min over 1 day, floor plans
- 200 rooms, 4 floors, occupancy every 5 min over 1 year, floor plans, room sizes
Scenario

• data: currency exchange rates
  – 30 countries (each against CAD)
  – measured every 5 min, duration 5 years
  – time series + country names + continent names (+ map shapefiles) + country populations
• task: find groups of similarly-performing currencies

• design
  – propose & justify idioms
Scenario

• data: CPU usage across many machines
  – 100 machines, belonging to 20 companies
  – measured every 5 min, duration 1 month
  – time series + company name + company location (country)

• task: capacity planning for machine room

• design
  – propose & justify idioms
Scenario

• data: many metrics across many machines
  – 100 machines, belonging to 20 companies
  – 4 metrics measured every 5 min, duration 1 month
    – CPU, memory, disk I/O, network traffic
    – time series + company name + company sector (finance/tech/entertainment/other)

• task: forensic analysis to determine possible causes of crashes

• design
  – propose & justify idioms
Consider

• what’s the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?
• what are trade-offs between
  – filtering to see one chart at a time
  – showing side by side with small multiples
  – superimposing on top of each other
• multi-scale structure to exploit? aggregate, zoom, slice/dice, filter?
• can you normalize the data? should you - always vs on demand?
• how to handle multi-scale space and multi-scale time?
• is spatial information germane or extraneous?
Next Steps
Visual Design Process In Depth: Dear Data

http://www.dear-data.com/by-week/
Visual Design Process In Depth: **Data Sketches**

http://www.datasketch.es/
Redesign En Masse: **Makeover Mondays**

Week 14 – Millions of UK workers at risk of being replaced by robots

Apr 7, 2017

During week 14 we looked at job automation and the potential impact of robots and AI on the UK employment market.

Week 13 – The Secret of Success

Mar 31, 2017

Week 13 took a look at a Russian survey about the secret of success. Dot plot, bump charts, bar charts, radar charts. This week had it all! Plus seven lessons to take on board.

Week 12 – March Madness

Mar 24, 2017

We looked at March Madness data for week 12, highlighting the phenomenon that is US college basketball. Quite a few vizzes showed the passion that

http://www.makeovermonday.co.uk/blog/