Lecture 7/8: Design & Justification Exercises, Beyond R

Tamara Munzner

Department of Computer Science

University of British Columbia

DSCI 532, Data Visualization 2 Week 4, Jan 23 / Jan 25 2018

www.cs.ubc.ca/~tmm/courses/mds-viz2-I7

@tamaramunzner

Viz theory

- block feedback: many people not seeing value of lecture material
- module covers both visualization tooling/code and visualization theory
 - -lectures: teach theory (assessed with both viz and reasoning)
 - are you coding the right thing?
 - -tutorials: teach tooling/code
 - how to code it
 - -lab 1:25% mechanics, 49% code, 21% theory, 5% writing
 - -milestone 1:5% mechanics, 65% theory, 30% writing
 - -milestone 2: 15% mechanics, 45% code, 38% theory, 2% writing
 - -milestone 3:5+11=15% mechanics, 10% code, 75% theory
- today: in-class practice on theory to help you do well on milestone 3
 - -bar is set considerably higher for milestone 3 than for milestones 1 & 2
 - now that more theory has been covered in class

How to handle complexity: 4 families of strategies

Manipulate

→ Filter

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view

→ Select

Partition

Aggregate

→ Navigate

Superimpose

→ Embed

- data: room occupancy rates
 - I room
 - -occupancy measured every 5 min, duration I day
- task: characterize space usage pattern

- design
 - propose idioms (visual encoding, interaction)
 - justify idiom choice

Consider

- what's the cardinality of the data?
- is a single static chart good enough?
- should you derive any useful additional data?

Cardinality

- Marshall: 68 cities * 40 years * 4 crime types = 10,880
- Wine: 130K * 4 = 650,000
 - -spatial (hierarchical), quantitative, categorical, free-form text

- data: room occupancy rates
 - -20 rooms
 - -measured every 5 min, duration I day
- task: compare space usage patterns between rooms

- design
 - propose idioms (visual encoding, interaction)
 - justify idiom choice

Consider

- what's the cardinality of the data?
- is a single static chart good enough?
- should you derive any useful additional data?

- what are trade-offs between
 - -filtering to see one chart at a time
 - -showing all side by side with small multiples
 - -superimposing all on top of each other

- data: room occupancy rates in building
 - I building: 200 rooms across 4 floors
 - -measured every 5 min, duration 1 day
 - -time series + floor plans
- task: characterize space usage patterns
 - -trends, outliers

- design
 - -propose & justify idioms

Consider

- what's the cardinality of the data?
- is a single static chart good enough?
- should you derive any useful additional data?
- what are trade-offs between
 - -filtering to see one chart at a time
 - -showing side by side with small multiples
 - -superimposing on top of each other

• multi-scale structure to exploit? aggregate, zoom, slice/dice, filter?

- data: room occupancy rates in building
 - I building: 200 rooms across 4 floors
 - -measured every 5 min, duration 1 year
 - -time series + floor plans + room sizes
- task: characterize space usage patterns
 - -trends, outliers
- design
 - propose & justify idioms

Consider

- what's the cardinality of the data?
- is a single static chart good enough?
- should you derive any useful additional data?
- what are trade-offs between
 - -filtering to see one chart at a time
 - -showing side by side with small multiples
 - -superimposing on top of each other
- multi-scale structure to exploit? aggregate, zoom, slice/dice, filter?
- can you normalize the data? should you always vs on demand?
- how to handle multi-scale space and multi-scale time?

Design Choices (Additional Context)

Normalized vs Absolute

Idiom: choropleth map

- use given spatial data
 - -when central task is understanding spatial relationships
- data
 - -geographic geometry
 - -table with I quant attribute per region
- encoding
 - -use given geometry for area mark boundaries
 - -sequential segmented colormap [more later]
 - –(geographic heat map)

http://bl.ocks.org/mbostock/4060606

Population maps trickiness

- beware!
- absolute/counts vs normalized/relative
 - population density vs per capita
- investigate with Ben Jones Tableau
 Public demo
 - http://public.tableau.com/profile/
 ben.jones#!/vizhome/PopVsFin/PopVsFin
 Are Maps of Financial Variables just Population Maps?
 - yes, unless you look at per capita (relative) numbers

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138]

ldiom: Bayesian surprise maps

- · use models of expectations to highlight surprising values
- confounds (population) and variance (sparsity)

[Surprise! Bayesian Weighting for De-Biasing Thematic Maps. Correll and Heer. Proc InfoVis 2016]

Radial vs Rectilinear

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

ldioms: radial bar chart, star plot

- radial bar chart
 - -radial axes meet at central ring, line mark
- star plot
 - -radial axes, meet at central point, line mark
- bar chart
 - -rectilinear axes, aligned vertically
- accuracy
 - -length unaligned with radial
 - less accurate than aligned with rectilinear

Radial Orientation: Radar Plots

LIMITATION: Not good when categories aren't cyclic

[Slide courtesy of Ben Jones]

"Diagram of the causes of mortality in the army in the East" (1858)

"Radar graphs: Avoid them (99.9% of the time)"

http://www.thefunctionalart.com/2012/11/radar-graphs-avoid-them-999-of-time.html

[Slide courtesy of Ben Jones]

ldiom: glyphmaps

 rectilinear good for linear vs nonlinear trends

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models.Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Radial orientation

- perceptual limits
 - -polar coordinate asymmetry
 - angles lower precision than lengths
 - frequently problematic
 - sometimes can be deliberately exploited!
 - for 2 attribs of very unequal importance

→ Rectilinear

→ Parallel

→ Radial

clicked at correct cell

Overview first, zoom and filter, details on demand

• influential mantra from Shneiderman

[The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Shneiderman. Proc. IEEE Visual Languages, pp. 336–343, 1996.]

overview = summary-microcosm of full vis design problem

Thursday

- Beyond R
 - -Ana on broader landscape
 - -Ana on direct comparison of Tableau to R
 - Vaden on python interactive tools
- Evaluations
- Further Design & Justification Exercises
- Next Steps

Evaluations

Viz theory

- block feedback: many people not seeing value of lecture material
- module covers both visualization tooling/code and visualization theory
 - -lectures: teach theory (assessed with both viz and reasoning)
 - are you coding the right thing?
 - -tutorials: teach tooling/code
 - how to code it
 - -lab 1:25% mechanics, 49% code, 21% theory, 5% writing
 - -milestone 1:5% mechanics, 65% theory, 30% writing
 - -milestone 2: 15% mechanics, 45% code, 38% theory, 2% writing
 - -milestone 3:5+11=15% mechanics, 10% code, 75% theory
- today: in-class practice on theory to help you do well on milestone 3
 - -bar is set considerably higher for milestone 3 than for milestones 1 & 2
 - now that more theory has been covered in class

How to handle complexity: 4 families of strategies

Manipulate

→ Filter

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view

→ Select

Partition

Aggregate

→ Navigate

Superimpose

→ Embed

Scenarios last time

- I room, occupancy every 5 min over I day
- 20 rooms, occupancy every 5 min over 1 day
- 200 rooms across 4 floors, occupancy every 5 min over 1 day, floor plans
- 200 rooms, 4 floors, occupancy every 5 min over 1 year, floor plans, room sizes

- data: currency exchange rates
 - -30 countries (each against CAD)
 - -measured every 5 min, duration 5 years
 - -time series + country names + continent names (+ map shapefiles) + country populations
- task: find groups of similarly-performing currencies

- design
 - -propose & justify idioms

- data: CPU usage across many machines
 - 100 machines, belonging to 20 companies
 - -measured every 5 min, duration I month
 - -time series + company name + company location (country)
- task: capacity planning for machine room

- design
 - propose & justify idioms

- data: many metrics across many machines
 - 100 machines, belonging to 20 companies
 - -4 metrics measured every 5 min, duration 1 month
 - -CPU, memory, disk I/O, network traffic
 - -time series + company name + company sector (finance/tech/entertainment/other)
- task: forensic analysis to determine possible causes of crashes

- design
 - propose & justify idioms

Consider

- what's the cardinality of the data?
- is a single static chart good enough?
- should you derive any useful additional data?
- what are trade-offs between
 - -filtering to see one chart at a time
 - -showing side by side with small multiples
 - -superimposing on top of each other
- multi-scale structure to exploit? aggregate, zoom, slice/dice, filter?
- can you normalize the data? should you always vs on demand?
- how to handle multi-scale space and multi-scale time?
- is spatial information germane or extraneous?

Next Steps

Visual Design Process In Depth: Dear Data

http://www.dear-data.com/by-week/

Visual Design Process In Depth: Data Sketches

http://www.datasketch.es/

Redesign En Masse: Makeover Mondays

http://www.makeovermonday.co.uk/blog/