Lectures 3&4: Facet into Multiple Views

Tamara Munzner
Department of Computer Science
University of British Columbia

DSCI 532: Data Visualization II
Lectures 3&4: 27 & 29 March 2017

https://github.ubc.ca/ubc-mds-2016/DSCI_532_viz-2_students
Encode

Arrange → Express → Separate

Order → Align

Use

Map from **categorical** and **ordered** attributes

- Color
 - Hue
 - Saturation
 - Luminance

- Size, Angle, Curvature, ...

- Shape
 - + ● ■ △

- Motion
 - Direction, Rate, Frequency, ...

Manipulate

- Change
 - Hue

- Select
 - Partition

- Navigate
 - Superimpose

Facet

- Juxtapose

Reduce

- Filter
 - Aggregate

What?

Why?

How?
How to handle complexity: 1 previous strategy + 3 more

- Derive
 - derive new data to show within view
 - change view over time
 - facet across multiple views
 - reduce items/attributes within single view

Manipulate
- Change
- Select
- Navigate

Facet
- Juxtapose
- Partition
- Superimpose

Reduce
- Filter
- Aggregate
- Embed
Facet

- **Juxtapose**

- **Partition**

- **Superimpose**
Juxtapose and coordinate views

• linked views
 • simultaneously visible multiple views
 • linked together such that actions in one view affect the others

➤ Share Encoding: Same/Different

➤ Linked Highlighting

➤ Share Data: All/Subset/None

➤ Share Navigation
Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
 - powerful and pervasive interaction idiom

- encoding: different
 - multiform
 - rationale: single monolithic view has strong limits on number of attributes that can be shown simultaneously

- data: all shared

Linked views

- unidirectional vs bidirectional linking

http://www.ralphstraumann.ch/projects/swiss-population-cartogram/
http://peterbeshai.com/linked-highlighting-react-d3-reflux/
Complex linked multiform views

System: Pathfinder

https://www.youtube.com/watch?v=aZF7AC8aNXo
Idiom: **bird’s-eye maps**

- encoding: same
- data: subset shared
- navigation: shared
 - bidirectional linking

- differences
 - viewpoint
 - (size)

- **overview-detail**

(System: **Google Maps**)

Overview-detail

https://www.youtube.com/watch?v=UcKDbGqHsdE
Shiny example

https://gallery.shinyapps.io/TSupplyDemand/
Idiom: **Parallel sets**

https://www.jasondavies.com/parallel-sets/

https://eagereyes.org/parallel-sets
Idiom: **Mosaic plots**

System: **Mondrian**

http://www.theusrus.de/blog/understanding-mosaic-plots/

http://www.theusrus.de/Mondrian/

http://www.theusrus.de/blog/making-movies/
Overview-detail

- multiscale: three viewing levels
 - tooling: processing (modern version: p5js.org)

https://www.youtube.com/watch?v=86p7brwuz2g
Shiny example

- APGI genome browser
 - tooling: R/Shiny
 - interactivity
 - tooltip detail on demand on hover
 - expand/contract chromosomes
 - expand/contract control panes

https://gallery.shinyapps.io/genome_browser/
Idiom: Small multiples

- encoding: same
- data: none shared
 - different attributes for node colors
 - (same network layout)
- navigation: shared

System: Cerebral

https://www.youtube.com/watch?v=76HhG1FQngI&t=2s

Coordinate views: Design choice interaction

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Data</th>
<th>Data</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Subset</td>
<td>None</td>
</tr>
<tr>
<td>Same</td>
<td>Redundant</td>
<td>Overview/Detail</td>
<td>Small Multiples</td>
</tr>
<tr>
<td>Different</td>
<td>Multiform</td>
<td>Multiform, Overview/Detail</td>
<td>No Linkage</td>
</tr>
</tbody>
</table>

• **why juxtapose views?**
 – benefits: eyes vs memory
 • lower cognitive load to move eyes between 2 views than remembering previous state with single changing view
 – costs: display area, 2 views side by side each have only half the area of one view
Why not animation?

- disparate frames and regions: comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

- safe special case
 - animated transitions
System: **Improvise**

- investigate power of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ok?
 - open research question
- reorderable lists
 - easy lookup
 - useful when linked to other encodings

Video: Visual Analysis of Historical Hotel Visitation Patterns

https://www.youtube.com/watch?v=Tzsv6wkZoiQ

http://www.cs.ou.edu/~weaver/improvise/examples/hotels/
Partition into views

• how to divide data between views
 – split into regions by attributes
 – encodes association between items using spatial proximity
 – order of splits has major implications for what patterns are visible

• no strict dividing line
 – view: big/detailed
 • contiguous region in which visually encoded data is shown on the display
 – glyph: small/iconic
 • object with internal structure that arises from multiple marks

Partition into Side-by-Side Views
Partitioning: List alignment

• single bar chart with grouped bars
 – split by state into regions
 • complex glyph within each region showing all ages
 – compare: easy within state, hard across ages

• small-multiple bar charts
 – split by age into regions
 • one chart per region
 – compare: easy within age, harder across states
Idiom: **Trellis plots**

- matrix alignment for small multiple plots
 - same issues as alignment for marks within plot!
- partition by
 - year for columns
 - site for rows (alphabetical)
- within pane
 - variety for vertical axis
 - yield for vertical position
Idiom: **Trellis plots**

- main effects ordering
 - order small-multiples plots based on derived data to see trends
 - order plots by median values
 - shared vertical axis within each plot ordered by median values within varieties
Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- then time
 - years as rows
 - months as columns
- color by price

- neighborhood patterns
 - where it’s expensive
 - where you pay much more for detached type

Partitioning: Recursive subdivision

- switch order of splits
 - type then neighborhood

- switch color
 - by price variation

- type patterns
 - within specific type, which neighborhoods inconsistent
Partitioning: Recursive subdivision

- different encoding for second-level regions
 - choropleth maps

Partitioning: Recursive subdivision

- size regions by sale counts
 - not uniformly
- result: treemap

Superimpose layers

• **layer**: set of objects spread out over region
 – each set is visually distinguishable group
 – extent: whole view

• **design choices**
 – how many layers, how to distinguish?
 • encode with different, nonoverlapping channels
 • two layers achievable, three with careful design
 – small static set, or dynamic from many possible?
Static visual layering

• foreground layer: roads
 – hue, size distinguishing main from minor
 – high luminance contrast from background

• background layer: regions
 – desaturated colors for water, parks, land areas

• user can selectively focus attention

• “get it right in black and white”
 – check luminance contrast with greyscale view

Idiom: **Trellis plots**

- superimpose within same frame
 - color code by year
Superimposing limits

• few layers, but many lines
 – up to a few dozen
 – but not hundreds

• superimpose vs juxtapose: empirical study
 – superimposed for local, multiple for global
 – tasks
 • local: maximum, global: slope, discrimination
 – same screen space for all multiples vs single superimposed

Dynamic visual layering

- interactive, from selection
 - lightweight: click
 - very lightweight: hover

- ex: 1-hop neighbors

Dynamic visual layering

• one-hop neighbour highlighting demos: click vs hover

Further reading

 – Chap 12: Facet Into Multiple Views

