Lectures 3&4: Facet into Multiple Views

Tamara Munzner
Department of Computer Science
University of British Columbia

Facet into Multiple Views

Tamara Munzner
Department of Computer Science
University of British Columbia
DSCI 532: Data Visualization 1
Lectures 3&4: 27 & 29 March 2017

Idiom: Linked highlighting
• see how regions contiguous in one view are distributed within another
 – powerful and pervasive interaction idiom
• encoding: different
 – multiform
 – rich: single monolithic view has strong limits on number of attributes that can be shown simultaneously
• data: all shared

System: EDV

Idiom: Juxtapose and coordinate views
• linked views
 – simultaneously visible
 – linked together such that actions in one view affect the others
• encoding: same
• data: subset shared
• navigation: shared
 – bidirectional linking

System: Google Maps

Idiom: bird’s-eye maps
• encoding: same
• data: subset shared
• navigation: shared
 – bidirectional linking
• differences
 – viewpoint
 – (size)
• overview-detail

System: StratomeX

Idiom: Mosaic plots
• encoding: same
• data: all shared
• navigation: shared
 – unidirectional vs bidirectional linking

System: Mondrian

Idiom: Overview-detail
• multiscale: three viewing levels
 – tooling (modern version: p6a.org)
• expand/contract control panes
• expand/contract control dimensions

System: MizBee

Idiom: Parallel sets

System: Pathfinder

Idiom: Small multiples
• encoding: same
• data: none shared
• navigation: shared
 – different attributes for node colors
 – (same network layout)

System: Cerebral
Superimpose layers
- layer: set of objects spread out over region
- each set is visually distinguishable group
- safe special case—animated transitions

Why not animation?
- disparate frames and regions: comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group
- small static set, or dynamic from many possible?

System: Improvise
- investigate potential of multiple views
 - pushing limits on view count, interaction complexity
 - how many is ideal
 - open research
 - non-durable loss
 - easy backup
 - useful when linked to other encodings

Idiom: Trellis plots
- matrix alignment for small multiple plots
 - same issues as alignment for marks within plot!
 - partition by
 - year for columns
 - site for rows (alphabetical)
 - within pane
 - variety for vertical axes
 - yield for vertical position

Partitioning: List alignment
- single bar chart with grouped bars
 - split by state into regions
 - compare easy within state, hard across ages
- small-multiple bar charts
 - split by age into regions
 - one chart per region
 - compare easy within age, harder across ages

Partitioning: Recursive subdivision
- switch order of splits
 - type then neighborhood
- switch color
 - by price variation
- type patterns
 - within specific type, which neighborhoods inconsistent

Static visual layering
- foreground layer: roads
 - high luminance contrast from background
- background layer: regions
 - desaturated colors for water, parks, land areas
- user can selectively focus attention
 - “get it right in black and white”
 - check luminance contrast with grayscale view

Idiom: Trellis plots
- main effects ordering
 - order small-multiple plots based on derived data to see trends
 - order plots by median values
 - shared vertical axes within each plot ordered by median values within varieties

System: HIVE
- size regions by sale
 - not uniformly
 - result: treemap
- different encoding for second-level regions
 - choropleth maps

Partition into views
- how to divide data between views
 - split by region by virtue
 - encodes association between items using spatial proximity
 - order of splits has major implications for what patterns are visible
- no strict dividing line
 - view hierarchy
 - contiguous region in which visually encoded data is shown on the display
 - glyph size/size
 - offset with internal structure that arises from multiple marks

Partitioning: Recursive subdivision
- split by neighborhood
 - then by type
 - then time
 - years as rows
 - months as columns
 - color by price
- neighborhood patterns
 - varies by expensive
 - where you pay more for detached type

Idiom: Trellis plots
- superimpose within same frame
 - color code by year
System: Cerebral

• interactive, from selection
 – lightweight: click
 – very lightweight: hover

• ex: 1-hop neighbors

Dynamic visual layering

• one-hop neighbour highlighting demos: click vs hover

Further reading

 – Chap 12: Facet Into Multiple Views
 – Chap 13: Overview+Detail, Zooming, and Focus+Context Interfaces.