Lectures 1&2: Manipulate & Interact

Tamara Munzner
Department of Computer Science
University of British Columbia

DSCI 532: Data Visualization 1
Lectures 1&2: 20 & 22 March 2017

What's when

- 8 lectures in 4 weeks
 - Mon & Wed, 11am-12:30pm (80 min), Mar 20 - Apr 12, ORCH 3058
- 4 labs
 - Mon, 2-4pm, Mar 20 - Apr 12, ESB 1042
 - start work Mon 2pm, due next Mon 9am, 12.5% each
- 2 quizzes/Week 3 (Mon Apr 3) & week 5 (Thu Apr 20)
 - 2-2:30pm, 25% each
- my (optional) office hrs are in ICICS/CS X661
 - Mon-Fri 3:30-4:30pm, Mar 20 - Apr 10
 - or by appointment

How to handle complexity: 1 previous strategy + 3 more

- **Idiom: Change encoding**
 - widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/combos
 - pros:
 - clear affordances, self-documenting (with labels)
 - easy to compare
 - cons:
 - drop menu space
 - design choices:
 - separated vs interleaved
 - controls & canvas

- **Idiom: Change parameters**
 - table with many attributes; derived rankings based on weights
 - how reorder by interactively changing weights

Reading

- same as before
 - core foundational material covered in lectures
 - textbook as backup to lectures
 - library has multiple ebook copies for free
 - see http://ubcbooks.ubc.ca/rentalbook/

Topics

- Lectures 1&2
 - Manipulate/View, Select, Facet
- Lectures 5&6
 - Face into Multiple Views
 - Justapose, Partition, Layer
- Lectures 7&8
 - Reduce Items & Attributes
 - Filter, Aggregate, Embed
- Lectures 11&12
 - Usability/Validation & Case Studies

Labs

- make visualizations as self-documenting as possible
 - meaningful & useful titles, labels, legends
 - axes and pens/alternatives should have labels
 - axes should have good min/max boundary tick marks
 - everything that's plotted should have a legend
 - axes and panes/subwindows should have labels
 - avoid scientific notation in most cases

How?

- encoding itself
- parameters
- arrange: rearrange, reorder
- (aggregation level, what is filtered…)

System: Tableau

- **Idiom: Change encoding**
 - sliders, buttons, radio buttons, checkboxes, dropdowns/combos

System: LineUp

- **Idiom: Change order/arrangement**
 - what: simple table
 - how: data-driven reordering
 - why: find extreme values, trends

[Sortable Bar Chart](https://bl.ocks.org/mbostock/3885705)

Map
Color
Motion
Size, Angle, Curvature, ...
Hue Saturation Lumiance
Shape
Direction, Rate, Frequency, ...
from categorical and ordered attributes

[LineUp: Visual Analysis of Multi-Attribute Rankings](http://www.scs.ubc.ca/lineup/)

[Tableau](http://tableausoftware.com)

[Map Color Motion Size, Angle, Curvature Hue Saturation Lumiance Shape Direction, Rate, Frequency from categorical and ordered attributes](https://xkcd.com/833/)

Idiom: Change encoding

- widgets and controls
 - sliders, buttons, radio buttons, checkboxes, dropdowns/combos
 - pros
 - clear affordances, self-documenting (with labels)
 - cons
 - uses screen space
 - design choices
 - separated vs interleaved
 - controls & canvas

Idiom: Change parameters

- table with many attributes; derived rankings based on weights
- how reorder by interactively changing weights

Idiom: Change order/arrangement

- what: simple table
- how: data-driven reordering
- why: find extreme values, trends
Navigate: Unconstrained vs constrained
• unconstrained navigation
 – easy to implement for designer
 – hard to control for user
 – hovering doesn’t work
• constrained navigation
 – typically uses animated transitions
 – trajectory automatically computed based on selection
 – just click selection ends up framed nicely in final viewport

Select: basic operation for most interaction
• select
 – how many selection types?
 – interaction modality
 – clicking (hard)/hovering (light) vs touchscreen
 – multiple click types
 – proximity of click/hovering vs distance
• application semantics
 – adding vs selecting vs replacing selection
 – use selection for what
 – we suggest as nothing selected if click on background

Tooltips
• what do you design for?
 – hover or click
 – can provide useful additional detail on demand
 – popup information for selection
 – hover or click
 – can provide useful additional detail on demand
 – a rollover or tooltip, assume nobody will see it. If it’s important, make it explicit.
 – Gregor Aisch, NYTimes

Interaction technology
• what do you design for?
 – mouse & keyboard on desktop?
 – for larger screens, hover, multiple clicks
 – touch interaction on mobile?
 – small screens, no hover, just tap
 – gestures from video / sensors?
 – ergonomic vs reality vs movie broadcast
 – eye tracking?

Navigate: Changing viewpoint/visibility
• change viewpoint
 – changes which items are visible within view
• camera metaphor
 – pan/translate/scroll
 – mouse & keyboard on desktop?
 – typically uses animated transitions

Scrolling: Scrollytelling
• how: navigate page by scrolling (panning down)
• pros:
 – familiar & intuitive, from standard web browsing
 – linear (only up & down) vs possible overload of click-based interface choices
• cons:
 – full-screen mode may lack affordances
 – scrolling/panning, no direct access
 – unexpected behaviour
 – continuous control for discrete steps

Animated transition + constrained navigation
• example: geographic map
 – simple zoom only viewpoint changes
 – add detail during transition to new level of detail

Idiom: Animated transition - tree detail
• animated transition
 – network drilldown/rollover

Idiom: Animated transition - bar detail
• example: hierarchical bar chart
 – add detail during transition to new level of detail

Idiom: Animated transition - visual encoding change
• smooth transition from one state to another
 – alternative to jump cuts, supports item tracking
 – best case for animation
 – staging to reduce cognitive load

Highlighting
• highlight change visual encoding for selection targets
 – change item color
 – but hides existing color coding
 – add outline mark
 – change shape (ex: from solid to dashed line for link mark)
 – unusual channels: motion
 – motion usually avoid for single view
 – with multiple views, could push to draw attention to other views

Idiom: Animated transition + constrained navigation
• example: incidence plot
 – add detail during transition into containing mark
 – smooth transition from one state to another
 – alternative to jump cuts, supports item tracking
 – best case for animation
 – staging to reduce cognitive load

Idiom: Animated transition - bar detail
• example: hierarchical bar chart
 – add detail during transition to new level of detail

Rule of thumb: Responsiveness is required
• visual feedback: three rough categories
 – 0.1 seconds: perceptual processing
 – 1 second: immediate response
 – 1 second: noticeable reaction
 – 10 seconds: context
 – bounded response after dialog box - mental model of heavyweight operation (file load)
 – scalability considerations
 – highlight selection without complete redraw of view (graphics frontier buffer)

Scrollytelling examples
• how: navigate page by scrolling (panning down)
• pros:
 – familiar & intuitive, from standard web browsing
 – linear (only up & down) vs possible overload of click-based interface choices
• cons:
 – full-screen mode may lack affordances
 – scrolling/panning, no direct access
 – unexpected behaviour
 – continuous control for discrete steps

Data visualization and the news - Gregor Aisch (37 min)
https://www.bloomberg.com/graphics/
how-the-us-and-opec-drive-oil-prices.html?_r=1
vimeo.com/182590214
Interaction limitations

- Interaction has a time cost
 - sometimes minor, sometimes significant
 - degenerates to human-powered search in worst case
- Remembering previous state imposes cognitive load
 - risk of thumb-eye overlap memory
- Controls may take screen real estate
 - or invisible functionality may be difficult to discover (lack of affordances)
- Users may not interact as planned by designer
 - NY Times logo show ~90% don’t interact beyond scrollytelling - Aisch, 2016
- Interaction benefits
 - Major advantage of computer-based vs paper-based visualization
 - Fluid task switching: different visual encodings support different tasks
 - Animated transitions provide excellent support
 - Empirical evidence that animated transitions help people stay oriented

Further reading