Lectures 5-6:
Spatial Data, Color

Tamara Munzner
Department of Computer Science
University of British Columbia

DSCI 531: Data Visualization I
Lecture 5: 29 November 2016
Lecture 6: 5 December 2016

https://github.ubc.ca/ubc-mds-2016/DSCI_531_viz-1_students
Spatial Data
VAD Chap 8: Arrange spatial data

- **Use Given**
 - Geometry
 - Geographic
 - Other Derived

- **Spatial Fields**
 - Scalar Fields (one value per cell)
 - Isocontours
 - Direct Volume Rendering
 - Vector and Tensor Fields (many values per cell)
Idiom: choropleth map

• use given spatial data
 – when central task is understanding spatial relationships

• data
 – geographic geometry
 – table with 1 quant attribute per region

• encoding
 – use given geometry for area mark boundaries
 – sequential segmented colormaps

• trickiness
 – small regions are less visually salient

http://bl.ocks.org/mbostock/4060606
Population maps trickiness

• beware!
• absolute vs relative again
 • population density vs per capita
• investigate with Ben Jones Tableau Public demo
 • http://public.tableau.com/profile/ben.jones#!/vizhome/PopVsFin/PopVsFin

Are Maps of Financial Variables just Population Maps?
• yes, unless you look at per capita (relative) numbers

[https://xkcd.com/1138]
Idiom: **topographic map**

- **data**
 - geographic geometry
 - scalar spatial field
 - 1 quant attribute per grid cell
- **derived data**
 - isoline geometry
 - isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service
Idiom: **isosurfaces**

- **data**
 - scalar spatial field
 - 1 quant attribute per grid cell
- **derived data**
 - isosurface geometry
 - isocontours computed for specific levels of scalar values
- **task**
 - spatial relationships

Vector and tensor fields

• data
 – many attrs per cell

• idiom families
 – flow glyphs
 • purely local
 – geometric flow
 • derived data from tracing particle trajectories
 • sparse set of seed points
 – texture flow
 • derived data, dense seeds
 – feature flow
 • global computation to detect features
 – encoded with one of methods above

Vector fields

• empirical study tasks
 – finding critical points, identifying their types
 – identifying what type of critical point is at a specific location
 – predicting where a particle starting at a specified point will end up (advection)
Idiom: similarity-clustered streamlines

• data
 – 3D vector field

• derived data (from field)
 – streamlines: trajectory particle will follow

• derived data (per streamline)
 – curvature, torsion, tortuosity
 – signature: complex weighted combination
 – compute cluster hierarchy across all signatures
 – encode: color and opacity by cluster

• tasks
 – find features, query shape

• scalability
 – millions of samples, hundreds of streamlines

Color
Idiom design choices: Encode

Why?
How?
What?

Map
from *categorical* and *ordered* attributes

- **Color**
 - *Hue* [red, yellow, blue]
 - *Saturation* [gray, white, black]
 - *Luminance* [green, blue, yellow]

- **Size, Angle, Curvature, ...**
 - ![Size, Angle, Curvature, ...](image)

- **Shape**
 - ![Shape](image)

- **Motion**
 - *Direction, Rate, Frequency, ...* [image]
Categorical vs ordered color

Color: Luminance, saturation, hue

- 3 channels
 - identity for categorical
 - hue
 - magnitude for ordered
 - luminance
 - saturation

- RGB: poor for encoding
- HSL: better, but beware
 - lightness ≠ luminance

Luminance
Saturation
Hue

Corners of the RGB color cube
L from HLS
All the same
Luminance values
Spectral sensitivity

& three cone types

Small but important separation
Opponent color and color deficiency

• 3 cones processed before optic nerve
 – one achromatic luminance channel L
 – edge detection through luminance contrast
 – two chroma channels, R-G and Y-B axis

• “color blind” if one axis has degraded acuity
 – 8% of men are red/green color deficient
 – blue/yellow is rare

Designing for color deficiency: Check with simulator

Normal vision Deuteranope Protanope Tritanope

http://rehue.net

Designing for color deficiency: Avoid encoding by hue alone

- redundantly encode
 - vary luminance
 - change shape

Deuteranope simulation

Color deficiency: Reduces color to 2 dimensions

Normal

Protanope

Deuteranope

Tritanope

Designing for color deficiency: Blue-Orange is safe
Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann
Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann
Bezold Effect: Outlines matter

• color constancy: simultaneous contrast effect
Colormaps

- Categorical
- Ordered
 - Sequential
 - Diverging
- Diverging

Colormaps

- Categorical
- Ordered
 - Sequential
 - Diverging
- Bivariate

Colormaps

- Categorical
 - Ordered
 - Sequential
 - Diverging
- Bivariate

use with care!

• color channel interactions
 – size heavily affects salience
 • small regions need high saturation
 • large need low saturation
 – saturation & luminance: 3-4 bins max
 • also not separable from transparency

ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!
Categorical color: Discriminability constraints

- noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]
Ordered color: Rainbow is poor default

• problems
 − perceptually unordered
 − perceptually nonlinear

• benefits
 − fine-grained structure visible and nameable

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues

Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues
 – fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

Viridis

• colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
Ordered color: Rainbow is poor default

• problems
 – perceptually unordered
 – perceptually nonlinear

• benefits
 – fine-grained structure visible and nameable

• alternatives
 – large-scale structure: fewer hues
 – fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 – segmented rainbows for binned or categorical
Map other channels

- **size**
 - length accurate, 2D area ok, 3D volume poor

- **angle**
 - nonlinear accuracy
 - horizontal, vertical, exact diagonal

- **shape**
 - complex combination of lower-level primitives
 - many bins

- **motion**
 - highly separable against static
 - binary: great for highlighting
 - use with care to avoid irritation
Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph