Lectures 5-6: Spatial Data, Color

Tamara Munzner

Department of Computer Science University of British Columbia

DSCI 531: Data Visualization 1 Lecture 5: 29 November 2016 Lecture 6: 5 December 2016

https://github.ubc.ca/ubc-mds-2016/DSCI_531_viz-1_students

Spatial Data

2

VAD Chap 8: Arrange spatial data

Use Given

- → Geometry
 - → Geographic
 - → Other Derived
- → Spatial Fields
 - → Scalar Fields (one value per cell)
 - → Isocontours
 - → Direct Volume Rendering
 - → Vector and Tensor Fields (many values per cell)

3

Idiom: choropleth map

- use given spatial data
 - -when central task is understanding spatial relationships
- data
 - -geographic geometry
 - -table with I quant attribute per region
- encoding
 - -use given geometry for area mark boundaries
 - -sequential segmented colormap
- trickiness
 - -small regions are less visually salient

http://bl.ocks.org/mbostock/4060606

Population maps trickiness

- beware!
- absolute vs relative again
 - population density vs per capita
- investigate with Ben Jones Tableau Public demo
 - <u>http://public.tableau.com/profile/</u> <u>ben.jones#!/vizhome/PopVsFin/PopVsFin</u> Are Maps of Financial Variables just Population Maps?
 - yes, unless you look at per capita (relative) numbers

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

[https://xkcd.com/1138]

Idiom: topographic map

- data
 - -geographic geometry
 - -scalar spatial field
 - I quant attribute per grid cell
- derived data
 - -isoline geometry
 - isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service

Idiom: isosurfaces

- data
 - -scalar spatial field
 - I quant attribute per grid cell
- derived data
 - -isosurface geometry
 - isocontours computed for specific levels of scalar values
- task
 - -spatial relationships

[Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.]

Vector and tensor fields

- data
 - -many attribs per cell
- idiom families
 - -flow glyphs
 - purely local
 - -geometric flow
 - derived data from tracing particle trajectories
 - sparse set of seed points
 - -texture flow
 - derived data, dense seeds
 - -feature flow
 - global computation to detect features
 - encoded with one of methods above

Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans.

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Vector fields

- empirical study tasks
 - -finding critical points, identifying their types
 - -identifying what type of critical point is at a specific location
 - -predicting where a particle starting at a specified point will end up (advection)

Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans.

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Idiom: similarity-clustered streamlines

- data
 - -3D vector field
- derived data (from field)

 streamlines: trajectory particle will follow
- derived data (per streamline)
 - -curvature, torsion, tortuosity
 - -signature: complex weighted combination
 - -compute cluster hierarchy across all signatures
 - -encode: color and opacity by cluster
- tasks
 - -find features, query shape
- scalability

-millions of samples, hundreds of streamlines

[Similarity Measures for Enhancing Interactive Streamline Seeding. McLoughlin, Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans. Visualization and Computer Graphics 19:8 (2013), 1342–1353.]

Idiom design choices: Encode

Encode

Categorical vs ordered color

Annual sales by state

Stone.Tableau Customer Conference 2014.]

[Seriously Colorful: Advanced Color Principles & Practices.

Color: Luminance, saturation, hue

• 3 channels Luminance -identity for categorical Saturation • hue -magnitude for ordered Hue • luminance • saturation • RGB: poor for encoding Corners of the RGB • HSL: better, but beware color cube -lightness ≠ luminance L from HLS All the same

Luminance values

Spectral sensitivity

Visible Spectrum

& three cone types

Wavelength (nm)

Opponent color and color deficiency

• 3 cones processed before optic nerve

-one achromatic luminance channel L

-edge detection through luminance contrast

-two chroma channels, R-G and Y-B axis

- "color blind" if one axis has degraded acuity
 - -8% of men are red/green color deficient

-blue/yellow is rare

Stone.Tableau Customer Conference 2014.]

Color information

[Seriously Colorful: Advanced Color Principles & Practices.

Designing for color deficiency: Check with simulator

Normal vision

Deuteranope Protanope

Tritanope

Stone.Tableau Customer Conference 2014.]

http://rehue.net

[Seriously Colorful: Advanced Color Principles & Practices.

Designing for color deficiency: Avoid encoding by hue alone

- redundantly encode \bullet
 - vary luminance
 - change shape

Change the shape

Vary luminance

Deuteranope simulation

Color deficiency: Reduces color to 2 dimensions

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

19

Designing for color deficiency: Blue-Orange is safe

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

212 5
, J Nev
iebec: M
the mas
Y
the for
0
15000
1 2
1 4 2
3 marto
Vermone
New Hampshi
Massachusett
Rhode Island
Connecticut
ew Jersey
elaware
land
of Columbia
-
9 Pa
Energy Contraction
and and

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Bezold Effect: Outlines matter

• color constancy: simultaneous contrast effect

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Sequential

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

-1 0 +1

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

- -size heavily affects salience
 - small regions need high saturation
 - large need low saturation
- -saturation & luminance: 3-4 bins max
 - also not separable from transparency

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

-1 0 +1

ColorBrewer

- <u>http://www.colorbrewer2.org</u>
- saturation and area example: size affects salience!

Categorical color: Discriminability constraints

noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable
- alternatives
 - -large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - –fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Viridis

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

heat

ggplot defaul

brewer blues

brewer yellow-gree

1-blue	
h-blue	
_	

33

• problems

- -perceptually unordered
- -perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - –large-scale structure: fewer hues
 - -fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
 - -segmented rainbows for binned or categorical

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Map other channels

	→ Size, /
• size	→ Leng
–length accurate, 2D area ok, 3D volume poor	→ Ang
• angle	
–nonlinear accuracy	→ Area
 horizontal, vertical, exact diagonal 	→ Curv
• shape	→ Volu
 –complex combination of lower-level primitives 	
-many bins	→ Shape
• motion	+ (
highly separable against static	→ Motic
 binary: great for highlighting 	→ Mot
-use with care to avoid irritation	Direc Frequ

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph