Tackling tables

- homogeneity
 - same data type? same scales?

- need different approaches based on scale
 - how many attributes?
 - up to >50 translatable with direct visual encoding
 - thousands need transformations / analytical methods
 - how many items?
 - up to 1K or scalable with direct visual encoding
 - >1K: need transformations / analytical methods

0 Keys: Express values (magnitudes)

Idiom: scatterplot

- express values
 - quantitative attributes
 - no keys, only values
 - axes
 - 2 quant axes
 - mark points
 - channels
 - horiz + ver position
 - tasks
 - size trends, outliers, distribution, correlation, clusters

Scatterplots: Encoding more channels

- additional channels for point marks
 - color
 - size (bubbleplot)
 - square root of size

Keys and values

- key
 - independent attribute
 - used as unique index to look up items

- simple tables: 1 key
- multidimensional tables: multiple keys

- value
 - dependent attribute, value of cell

- classify arrangements by key count
 - ~0, 1, 2, many...

Some keys: Categorical regions

- regions: contiguous bounded areas distinct from each other
- using space to separate (proximity)
 - following expressiveness principle for categorical attributes

- use ordered attribute to order and align regions

Scatterplot tasks

- correlation
 - clusters/groups, and clusters vs classes

Some keys: Express Values

- one key, one value
 - marks
 - channels
 - length to express quant value

- spatial regions one per mark
 - separated horizontally aligned vertically
 - ordered by quant value
 - by label (alphabetically), by length (data-driven)

- task
 - compare, looking values

- scalability
 - dozens to hundreds of levels for key mark

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Exercise: Sketch 2 ways to visualize each table

1 Key 2 Keys 3 Keys Many Keys
List Recursive Subdivision
Volume Matrix
Rectilinear Parallel Radial
Pie chart perception

- Same empirical evidence that people respond to arc length
- Not angles
- Maybe arc length?
- Donut charts no worse than pie charts

Pie chart best practices

- Not bad for (two or) few levels, for part-to-whole task
- Dubious for several levels if details matter
- Terrible for many levels

Idioms:-spacefilling

- Rectilinear good for linear vs nonlinear trends
- Radial good for cyclic patterns

Idioms: cluster heatmap

- In addition
 - Derived data
 - 2 cluster hierarchies
- dendrogram
 - Parent-child relationships in tree with connection line marks
 - Lewis graph or interior branch heights easy to compare
- Heatmap
 - Marks (e.g., bordered by color) hierarchy traversal
 - Scale: sense quality of clusters hand by systematic methods

Idioms: normalized stacked bar chart

- Task
 - Part-to-whole judgements
- Normalized stacked bar chart
 - Stacked bar chart, normalized to full-vf height
 - Single stacked bar equivalent to full pie
 - High information density: requires narrow rectangles
- Pie chart
 - Information density: requires large rectangle

Idioms: parallel coordinates

- Scatterplot matrix (SPLOM)
 - Rectilinear axes, point mark
 - All possible pairs of axes
 - Scalability
 - One dozen axes
 - Dozens to hundreds of items

Idioms: glyphmaps

- Rectilinear good for linear vs nonlinear trends
- Radial good for cyclic patterns

Idioms: heatmap

- Two keys, one value
 - Data
 - 2-cm scales (gene, experimental condition)
- Metrics
 - Area
 - Color by quartile
- Channels
 - Color by quartile
 - (Centered diverging color map)
 - Task
 - Find clusters, outliers
 - Scalability
 - ~19 turns, 100 of levels, ~10 quartile levels

Idioms: radial bar chart, star plot

- Radial bar chart
 - Radial axes meet at central ring, line mark
- Star plot
 - Radial axes, meet at central point, line mark
- Bar chart
 - Rectilinear aligned, axes aligned vertically
 - Accuracy
 - Length aligned with radial
 - Less accurate than aligned with rectilinear

Idioms: pie chart, polar area chart

- Pie chart
 - Line marks with angle channel variable (sector) width
- Polar area chart
 - Line marks with length channel variable (sector) width
 - Accuracy: arc less accurate than sector length
Arrange Tables

- **Task: Correlation**
 - scatterplot matrix
 - diagonal-low-to-high correlation
 - diagonal-high-to-low correlation
 - uncorrelated spread out

- **Parallel coordinates**
 - positive correlation
 - negative correlation
 - not sure
 - horsepower to acceleration
 - weight to mileage

- **Parallel coordinates quiz: car data**
 - What correlations do you see?
 - positive?
 - negative?
 - none?
 - not sure?
 - horsepower to acceleration
 - weight to mileage?

- **Parallel coordinates, limitations**
 - visible patterns only between neighboring axis pairs
 - how to pick axis order?
 - some weaknesses as many other techniques
 - downside of interaction: human-powered search
 - some algorithms proposed, none fully solved

- **Orientation limitations**
 - rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - 4+ impossible
 - parallel: unfamiliarity, training time

Orientations

- **Radial orientation**
 - perceptual limits
 - polar coordinate asymmetry
 - angles lower precision than length
 - nonuniform sector width/size depending on radial distance
 - frequently problematic
 - sometimes can be deliberately exploited
 - for 3 attrs of very unequal importance

- **Layout density**
 - polar coordinate asymmetry
 - angles lower precision than length
 - nonuniform sector width/size depending on radial distance
 - frequently problematic
 - sometimes can be deliberately exploited
 - for 3 attrs of very unequal importance

- **Idiom: Dense software overviews**
 - data: text
 - text = 1 quad attr per line
 - derived data:
 - one pixel high line
 - length according to original
 - color line by attrib
 - scalability
 - 10K+ lines

Encode: tables: Arrange space

- **Encode tables: Arrange space**
 - **Encode**
 - **Arrange**
 - **Express**
 - **Separate**
 - **Order**
 - **Align**

- **Design critique & redesign: NZ**
 - Consider the following questions:
 - 1 What could be the goals of the designer for your design?
 - 2 What is the visualization scheme (domain-specific & abstract)?
 - 3 How is the data type visually encoded (meta/attributes)?
 - 4 Can you read the data precisely? Is the visual encoding appropriately chosen?
 - 5 How would you make this work without numeric labels?
 - Develop two alternative designs to visualize this data.
 - Fine to discuss with your peers, but draw your own solution.
 - Mark your best design, briefly note why you think it's best.

Upcoming

- **D3 videos week 3**
 - Making a Bar Chart with D3 and SVG [30 min]
 - Quiz 3, due by Fri Jan 24, 8am
 - Reading: Reusable D3 Components
 - Friday: Pattern of D3.js [60 min]
 - Interaction with Unidirectional Data Flow [16 min]

Design critique & redesign: NZ

- Consider the following questions:
 - 1 What could be the goals of the designer for questions that the visualization answers (domain-specific & abstract)?
 - 2 What data is represented in this visualization? Be specific.
 - 3 How is each data type visually encoded (meta/attributes)?
 - 4 Can you read the data precisely? Is the visual encoding appropriately chosen?
 - 5 How would you make this work without numeric labels?
 - Develop two alternative designs to visualize this data.
 - Fine to discuss with your peers, but draw your own solution.
 - Mark your best design, briefly note why you think it's best.

Credits

- Visualization Analysis and Design (Ch 7)
- Alex Lex & Miriah Meyer: http://datavisualization.net/
- Ben Jones, UW/Tableau