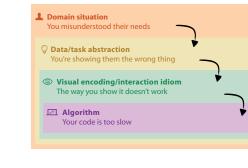
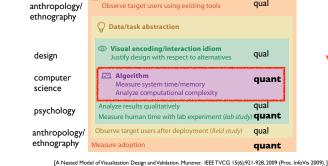
Information Visualization **Data Abstraction**


Department of Computer Science University of British Columbia

Tamara Munzner

Lect 2, 9 Jan 2020

http://www.cs.ubc.ca/~tmm/courses/436V-20


Different threats to validity at each level · cascading effects downstream

Interdisciplinary: need methods from different fields at each level

Nested Model

• mix of qual and quant approaches (typically)

Amy

Basil

Clara

Fanny

George

Hector

12

Ida

Amy

Desmond Ernest

Now what? · semantics: real-world meaning

-two points far from each other in 3D space? -two points close to each other in 2D space, with 15 links between them, and a weight of

100001 for the link? -something else?? Basil, 7, S, Pear

• What about this data?

-food shipment of produce (basil & pear) arrived in satisfactory condition on 7th day of

Items & Attributes

item: individual entity, discrete

measured, observed, logged...

- eg horsepower, make for car

-eg height, blood pressure for patient

- eg patient, car, stock, city

attribute: property that is

-"independent variable"

-"dependent variable"

What does data mean?

14, 2.6, 30, 30, 15, 100001

• What does this sequence of six numbers mean?

- Basil Point neighborhood of city had 7 inches of snow cleared by the Pear Creek Limited snow removal service
- -lab rat Basil made 7 attempts to find way through south section of maze, these trials used pear as reward food

Basil

Clara

Desmond

Ernest

George

Hector

item: person

Amy

Fanny

attributes: name, age, shirt size, fave fruit

10

Age Shirt Size Favorite Fruit

M

Apple

Pear

Durian

Peach

Lychee

Orange

Loquat

Orange

Pear

Elderberry

Other data types

- -express relationship between two items - eg friendship on facebook, interaction between proteins
- -spatial data: location in 2D or 3D
- -pixels in photo, voxels in MRI scan, latitude/longitude • (grids)
- -sampling strategy for continuous data

How to evaluate a visualization: So many methods, how to pick? · Computational benchmarks?

- -quant: system performance, memory
- · User study in lab setting?
- -quant: (human) time and error rates, preferences
- -qual: behavior/strategy observations
- Field study of deployed system?
- -quant: usage logs
- -qual: interviews with users, case studies, observations · Analysis of results?
- -quant: metrics computed on result images
 - -qual: consider what structure is visible in result images
- · lustification of choices?
- qual: perceptual principles, best practices

Now what?

problem-driven

technique-driven

work

Apple

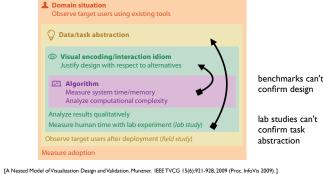
Durian

Peach

Lychee

Orange

Loguat


Orange

Pear

Elderberry

Pear

Mismatches: Common problem

• semantics: real-world meaning

Name	Age	Shirt Size	Favorite Fruit
Amy	8	S	Apple
Basil	7	S	Pear
Clara	9	M	Durian
Desmond	13	L	Elderberry
Ernest	12	L	Peach
Fanny	10	S	Lychee
George	9	M	Orange
Hector	8	L	Loquat
Ida	10	M	Pear

Orange

12

flat table

Dataset types	flat table–one item per r	ow				Da	ataset typ	es
Tables	each column is	attribute					Tables	
Items							Items	
Attributes		attributes: n Name	ame, as	e, shirt size			Attributes	
		Amy Basil	8 7	S S	Apple Pear			
→ Tables		Clara	9	М	Durian	-	→ Tables	
Attributes (columns) Items (rows) Cell containing value		Desmond Ernest	13 12	L L	Elderberry Peach		Attributes (colur	
		Fanny George	10 9	S M	Lychee Orange		Items (rows)	
		Hector Ida	8 10	L M	Loquat Pear		Cell conta	aining v
L		Amy	12	M	Orange	_		
	ite	m: person			15			

Amy

domain situation

-how is it shown?

- efficient computation

abstraction

idiom

algorithm

-who are the target users?

• what is shown? data abstraction

· visual encoding idiom: how to draw

• interaction idiom: how to manipulate

· semantics: real-world meaning

 data types: structural or mathematical interpretation of data -item, link, attribute, position, (grid)

What: Data Abstraction

Nested model: Four levels of visualization design

- translate from specifics of domain to vocabulary of visualization

• why is the user looking at it? task abstraction

- often must transform data, guided by task

-different from data types in

Now what?

programming!

Name Age Shirt Size Favorite Fruit Amy Apple Basil Pear Clara Durian Desmond 13 Elderberrv

abstraction What?

algorithm

Munzner. IEEE TVCG 15(6):921-928, 2009

Peach

Lychee

Orange

Loquat

Orange

Pear

Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

(Proc. InfoVis 2009) 1

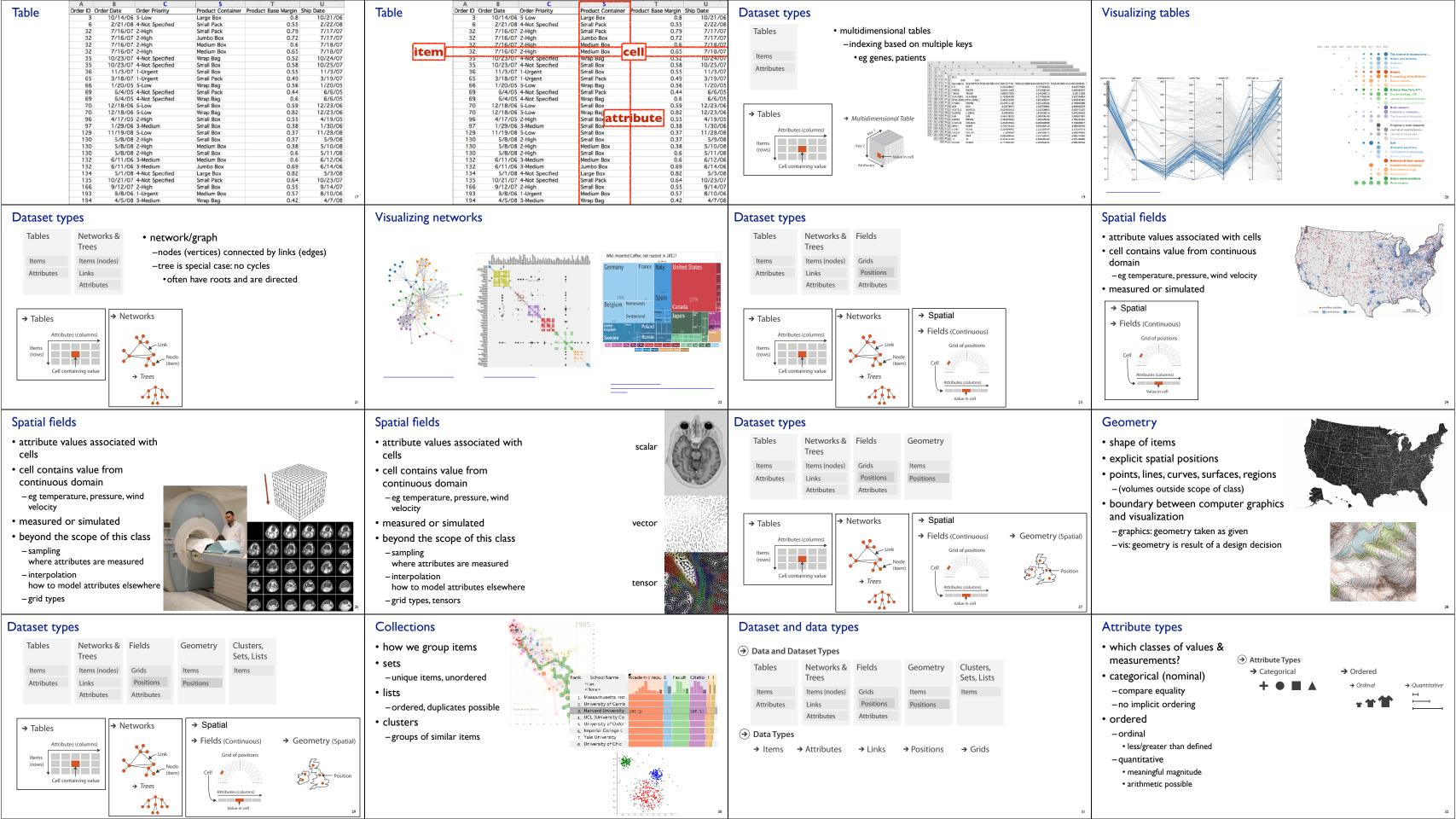
Ernest Fanny George Hector Ida Amy

• flat table

-each column is attribute

-cell holds value for item-attribute pair -unique key (could be implicit)

-one item per row


attributes: name, age, shirt size, fave fruit Name

item: person

→ Tables Attributes (column 1 1

Favorite Fruit Age Shirt Size Apple Basil Pear Clara Μ Durian Desmono Elderberry Ernest Peach Fanny Lychee Μ George Orange Hector Loquat Ida Pear Orange Amy

Cell containing value

Α	В	C	S	T	U		A	
	Order Date	Order Priority	Product Container	Product Base Margin			Order ID	
3	10/14/06	5-Low	Large Box	0.8	10/21/06		3	10
6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/08		6	- 2
32	7/16/07	2-High	Small Pack	0.79	7/17/07	categorical	32	7
32	7/16/07	2-High	Jumbo Box	0.72	7/17/07	_	32	7
32	7/16/07	2-High	Medium Box	0.6	7/18/07	ordinal	32	7
32	7/16/07	2-High	Medium Box	0.65	7/18/07		32	1
35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/07	quantitative	35	10
35		4-Not Specified	Small Box	0.58	10/25/07		35	10
36		1-Urgent	Small Box	0.55	11/3/07		36	
65	3/18/07	1-Urgent	Small Pack	0.49	3/19/07		65	
66	1/20/05		Wrap Bag	0.56	1/20/05		66	
69	6/4/05	4-Not Specified	Small Pack	0.44	6/6/05		69	
69	6/4/05	4-Not Specified	Wrap Bag	0.6	6/6/05		69	
70			Small Box	0.59	12/23/06		70	12
70	12/18/06		Wrap Bag	0.82	12/23/06		70	12
96	4/17/05	2-High	Small Box	0.55	4/19/05		96	10
97	1/29/06	3-Medium	Small Box	0.38	1/30/06		97	
129	11/19/08		Small Box	0.37	11/28/08		129	11
130	5/8/08	2-High	Small Box	0.37	5/9/08			- 1
130	5/8/08		Medium Box	0.38	5/10/08		130	
130	5/8/08		Small Box	0.6	5/11/08		130	
132		3-Medium	Medium Box	0.6	6/12/06		130	
132		3-Medium	Jumbo Box	0.69	6/14/06		132	(
134		4-Not Specified	Large Box	0.82	5/3/08		132	(
135		4-Not Specified	Small Pack	0.64	10/23/07		134	
166	9/12/07		Small Box	0.55	9/14/07		135	10
193		1-Urgent	Medium Box	0.57	8/10/06	33	166	9
194	4/5/08	3-Medium	Wrap Bag	0.42	4/7/08		193	

Date Order Priority 10/14/06 5-Low 2/21/08 4-Not Specified 7/16/07 2-High 7/16/07 2-High Jumbo Box 7/16/07 2-High 10/23/07 4-Not Specified Medium Bo 10/23/07 4-Not Specifie 11/3/07 1-Urgent 3/18/07 1-Urgent 1/20/05 5-Low 6/4/05 4-Not Specified Wrap Bag Small Pack Wrap Bag Small Box 6/4/05 4-Not Specifie 12/23/0 12/18/06 5-Low 12/18/06 5-Low Wrap Bag Small Box Small Box 4/17/05 2-High 1/29/06 3-Medium 5/8/08 2-High Small Box 5/8/08 2-High 5/8/08 2-High 6/11/06 3-Mediur Medium Bo 5/1/08 4-Not Specified 10/21/07 4-Not Specified

Quiz:What kind of variable?

- 50 meter race times
- college major
- Amazon rating for product
- product name

Hierarchical data

- multi-level structure
- -space

Table

- time
- -others
- example: zipdecode

https://benfry.com/zipdecode/

Data abstraction: Three operations

- translate from domain-specific language to generic visualization language
- identify dataset type(s), attribute types
- identify cardinality
- -how many items in the dataset?
- -what is cardinality of each attribute?
- number of levels for categorical data
- range for quantitative data
- consider whether to transform data

• 2018 Central Park Squirrel Census

-guided by understanding of task

Data abstraction practice

www.thesquirrelcensus.com/

data.cityofnewyork.us/ Environment/2018-Central-Park-Squirrel-Census-

Squirrel-Data/vfnx-vebw

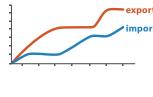
https://

https://

Data vs conceptual models

- · data model
- mathematical abstraction
- sets with operations, eg floats with * / +
- variable data types in programming languages
- conceptual model
- -mental construction (semantics)
- -supports reasoning
- -typically based on understanding of tasks [stay tuned, next week]
- data abstraction process relies on conceptual model
- -for transforming data if needed

Data vs conceptual model, example

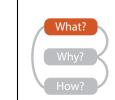

- data model: floats
- -32.52, 54.06, -14.35, ...

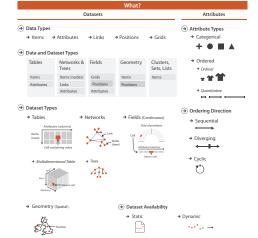
Other data concerns

- conceptual model
- -temperature
- multiple possible data abstractions
- -continuous to 2 significant figures: quantitative
- task: forecasting the weather
- -hot, warm, cold: ordinal
- task: deciding if bath water is ready
- -above freezing, below freezing: categorical
- task: decide if I should leave the house today

Derived attributes

- derived attribute: compute from originals
- -simple change of type
- -acquire additional data
- -complex transformation
- more on this next time


trade balance = exports – imports


Derived Data

Original Data Derived

Credits

- Visualization Analysis and Design (Ch 2)
- Alex Lex & Miriah Meyer, http://dataviscourse.net/

Todo this week

- D3 videos to watch this week
- -refresher only if you need it: JS/HTML [90 min]
- -Intro to HTML/CSS/SVG [35 min]
- -Intro to D3.js [45 min]
- Quiz I to do this week, due by Fri Jan 10, 8am
- remember, no in-person labs this week!
- Foundations Exercise I out today (Thu Jan 9)
- due Wed Jan 15