
Author: Michael Oppermann. Last change date: Nov 14, 2019.

D3 layout methods are helpful for implementing a range of visualizations, such as stacked bar charts,
treemaps, or node-link diagrams, that require a more advanced positioning of visual marks. For example, to lay
out elements relative to each other instead of positioning them at given [x,y] coordinates.

The D3 layout methods have no direct visual output. Rather, D3 layouts take data that you provide and
re-map or otherwise transform it, thereby generating new data that is more convenient for a specific task.
(Scott Murray)

D3 offers a number of different layouts, each with distinct characteristics, so make sure to consult the D3
documentation for implementation details. At the end of the article is a list of D3 layouts with links to the online
documentation.

We will briefly introduce a few example layouts.

D3 Layouts

Force Layout (d3-force)

https://github.com/d3/d3-force

The force layout, initialized using d3.forceSimulation() , is typically used to create node-link diagrams.
It consists of nodes and edges (links connecting the nodes) and helps you to visualize networks and the
relationships between objects (e.g., social networks, relationships between politicians, protein–protein
interactions, business relations, ...).

The name force-directed layout comes from the fact that these layouts use simulations of physical forces to
arrange elements on the screen. The goal is to reduce the number of crossing edges, so that is easy for the
user to analyze the whole network. You will learn more about networks during the lectures next week.

Force layouts can be used for other chart types too, such as beeswarm plots.

d3.histogram() creates a new histogram generator that groups many discrete samples into a smaller
number of bins. Similar to other D3 layouts, you can use the accessor functions to customize it.

Example implementation:

const data = [1,234,25,38,100,12,34,40,150,89,199,80];

// Initialize scale
let x = d3.scaleLinear()
 .rangeRound([0, width])
 .domain([0, d3.max(data)]);

// Initialize histogram layout and set parameters
let histogram = d3.histogram()
 .domain(x.domain())
 .thresholds(x.ticks(10)); // number of bins

// Apply histogram function to the input data to assign data points to bins
const bins = histogram(data);

Stacked layouts, such as stacked bar charts or stacked area charts, are often used to show total values and
per-category values simultaneously. d3.stack() computes layout positions that can be either used to place
marks directly or they can be passed to a path generator (i.e., d3.area()).

Example implementation for a stacked area chart:

Histogram Layout (d3-array)

Stack Layout (d3-shape)

https://www.d3-graph-gallery.com/graph/network_basic.html
https://blockbuilder.org/mbostock/6526445e2b44303eebf21da3b6627320
https://github.com/d3/d3-array/blob/v1.2.4/README.md#histogram
https://github.com/d3/d3-shape/blob/master/README.md#stacks

const data = [
 {
 year: 2017,
 apple: 10,
 orange: 20
 },
 {
 year: 2018,
 apple: 40,
 orange: 30
 }
 // ...
];

// Initialize stack layout
// Values for 'apples' and 'oranges' should be displayed
// on the same chart, by stacking them on top of each other.
const stack = d3.stack().keys(['apple', 'orange']);

// Apply layout function to the input data
const stackedData = stack(data);
// [
// [[0, 10], [0, 40], key: 'apple', index: 0]
// [[10, 30], [40, 70], key: 'orange', index: 1]
//]

// Now you can use the 'stackedData' array
// in D3's enter-update-exit pattern to draw a path
// for each layer in the stacked area chart.
// ...

d3 stack
d3 histogram
d3 treemap
d3 tree
d3 pack
d3 cluster
d3 pie
d3 force
d3 chord

D3 API documentation:

https://github.com/d3/d3-shape/blob/master/README.md#stacks
https://github.com/d3/d3-array/blob/master/README.md#histograms
https://github.com/d3/d3-hierarchy/blob/master/README.md#treemap
https://github.com/d3/d3-hierarchy/blob/master/README.md#tree
https://github.com/d3/d3-hierarchy/blob/master/README.md#pack
https://github.com/d3/d3-hierarchy/blob/master/README.md#cluster
https://github.com/d3/d3-shape/blob/master/README.md#pies
https://github.com/d3/d3-force
https://github.com/d3/d3-chord/blob/master/README.md#chord

...

