
University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Animation, Advanced Rendering,
Final Review

Week 6, Tue Jun 14

�

News

� P4 grading
� 4:30-5:45 Wed Jun 22

�

Review: Volume Graphics

� for some data, difficult to create polygonal mesh
� voxels: discrete representation of 3D object

� volume rendering: create 2D image from 3D object
� translate raw densities into colors and

transparencies
� different aspects of the dataset can be emphasized

via changes in transfer functions

�

Review: Volume Graphics

� pros
� formidable technique for data exploration

� cons
� rendering algorithm has high complexity!
� special purpose hardware costly (~$3K-$10K)

volumetric human head (CT scan)

�

Review: Isosurfaces

� 2D scalar fields: isolines
� contour plots, level sets
� topographic maps

� 3D scalar fields: isosurfaces

�

Review: Isosurface Extraction

� array of discrete point
samples at grid points
� 3D array: voxels

� find contours
� closed, continuous
� determined by iso-value

� several methods
� marching cubes is most

common
� � � � �

� � � � �

� � � � �

� � � � �

	 � � � �

�����������

�

Review: Marching Cubes
� create cube
� classify each voxel
� binary labeling of each voxel to

create index
� use in array storing edge list

� all 256 cases can be derived
from 15 base cases

� interpolate triangle vertex
� calculate the normal at each

cube vertex
� render by standard methods

����	�		

�

Review: Direct Volume Rendering Pipeline

��������

� 	�
�

����������

��� ������

� do not compute surface

�

Review: Transfer Functions To Classify
� map data value to color and opacity

� can be difficult, unintuitive, and slow

f

α

f

α

f

α

f

α

Gordon Kindlmann

	

Review: Volume Rendering Algorithms

� ray casting
� image order, forward viewing

� splatting
� object order, backward viewing

� texture mapping
� object order
� back-to-front compositing

		

Review: Ray Casting Traversal Schemes

� ����

��������
� ��

� �� �!�

� ""�# �����

$� ��

	�

Review: Information Visualization
� interactive visual representation of abstract data

� help human perform some task more effectively
� bridging many fields

� graphics: interacting in realtime
� cognitive psych: finding appropriate representation
� HCI: using task to guide design and evaluation

� external representation
� reduces load on working memory
� offload cognition

� familiar example: multiplication/division
� infovis example: topic graphs

	�

Review: Shneiderman mantra

� overview, zoom and filter, details-on-demand

	�

Review: Overviews - SeeSoft

� colored lines of code: lines one pixel high

	�

Review: Focus+Context

� integrate overview and details into single view

� H3: 3D fisheye

� TreeJuxtaposer: stretch and squish

� SpaceTree: collapse/expand

	�

Review: 3D Extrusion vs. Linking

� perspective interferes with comparison
� daily, weekly patterns hard to see

� linked cluster/calendar view more effective

[van Wijk and van Selow, Cluster and Calendar based Visualization of Time
Series Data, InfoVis99, citeseer.nj.nec.com/vanwijk99cluster.html]

	�

Review: Preattentive Visual Channels: Popout
� single channel processed in parallel for popout

� visual attentional system not invoked
� speed independent of distractor count
� hue, shape, texture, length, width, size, orientation,

curvature, intersection, intensity, flicker, direction of
motion, stereoscopic depth, lighting direction,...

� multiple channels not parallel
� search linear in number of

distractor objects

[Chris Healey, Preattentive Processing, www.csc.ncsu.edu/faculty/healey/PP]

	�

Review: Data Type Affects Channel Ranking

� spatial position best for all types
� accuracy at judging magnitudes, from best to worst

[Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986]
[Card, Mackinlay, and Shneiderman. Readings in Information Visualization: Using Vision to Think. Morgan

Kaufmann 1999. Chapter 1]

	�

Review: Coloring Categorical Data

� discrete small patches separated in space
� limited distinguishability: around 8-14

� channel dynamic range: low
� choose bins explicitly for maximum mileage

� maximally discriminable colors from Ware
� maximal saturation for small areas

� vs. minimal saturation for large areas

[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999. Figure 4.21]

�

Review: Rainbow Colormap Disadvantages

� perceptually nonlinear segmentation, hue unordered

� (partial) solution perceptually isolinear map

[Kindlmann, Reinhard, and Creem. Face-based Luminance Matching for Perceptual Colormap Generation.
Proc. Vis 02 www.cs.utah.edu/~gk/lumFace]

[Rogowitz and Treinish, How NOT to Lie with Visualization,www.research.ibm.com/dx/proceedings/pravda/truevis.htm

�	

Review: Color Deficiency – vischeck.com
� 10% of males have red/green deficit

��

Review: Space vs. Time: Showing Change

��

Review: Space vs. Time: Showing Change

��

Animation

(slides based on Robert Bridson’s CPSC 426 preview)
www.ugrad.cs.ubc.ca/~cs426

��

Computer Animation

� offline: generate a film, play it back later
� long ago reached the point of being able to

render anything an artist could model
� problem is: how to model?

� tools/UI for directly specifying model+motion
(the traditional technique)

� procedural modeling (e.g. particle systems)
� data-driven modeling (e.g. motion capture)
� physics-based modeling (e.g. fluid simulation)

��

Real-Time Animation

� for example, games
� rendering limited, modeling even more limited
� “traditional” technique - replay scripted

motions
� but scalability/realism are becoming a problem
� need to generate more new motion on the fly

��

Traditional CG Animation

� Grew out of traditional animation
� [Pixar]
� every detail of every model is parameterized

� e.g. position and orientation of base of lamp, joint
angles, lengths, light intensity, control points for
spline curve of power cord, …

� associate a “motion curve” with each parameter -
how it changes in time

� animating == designing motion curves

��

Motion Curves

� keyframe approach:
� artist sets extreme values at important frames
� computer fills in the rest with splines
� artist adjusts spline controls, slopes, adds more

points, adjusts, readjusts, re-readjusts, …
� straight-ahead approach:

� artist simply sets parameters in each successive
frame

� layering approach:
� design the basic motion curves first, layer detail on

afterwards

��

Motion Curve Tools

� retiming: keep the shape of the trajectory, but
change how fast we go along it
� add a new abstract motion curve controlling

distance traveled along trajectory
� Inverse Kinematics (IK):

� given a skeleton (specified by joint angles)
� artist directly controls where parts of the

skeleton go, computer solves for the angles
that achieve that

�

Procedural Modeling

� write programs to automatically generate models
and motion

� for example, “flocking behaviour”
� build a flock of birds by specifying simple rules of

motion:
� accelerate to avoid collisions
� accelerate to fly at preferred distance to nearby birds
� accelerate to fly at same velocity as nearby birds
� accelerate to follow “migratory” impulse

� let it go, hope the results look good

�	

Data-Driven Modeling

� measure the real world, use that data to
synthesize models
� laser scanners
� camera systems for measuring reflectance

properties
� Image-Based Rendering - e.g. Spiderman
� …

��

Data-Driven Motion

� record real motion (motion capture = mocap)
� then play it back
� but life is never that simple

� real motion is hard to measure
� measurements are noisy
� won’t quite fit what you needed
� not obviously adaptable to new environments,

interactive control, etc.

��

Marker-Based Mocap

� stick performer in a tight black suit, stick
markers on body, limbs, …

� film motion with an infrared strobe light and
multiple calibrated cameras

� reconstruct 3D trajectories of markers, filling
in gaps and eliminating noise

� infer motion of abstract skeleton
� clean up data
� drive CG skeleton with recorded motion

curves

��

What it looks like…

(from Zoran Popovic’s website)

��

Footskate and Clean Up

� most common problem: footskate
� feet that in reality were stuck to floor hover

and slip around
� fix using IK: determine target footplants,

automatically adjust joint angles to keep feet
planted
� often OK to even adjust limb lengths…

��

Motion Control

� how do you adapt mocap data to new
purposes?
� motion graphs (remixing)
� motion parameterization (adjust mocap data)
� motion texturing (add mocap details to

traditional animation)

��

Motion Graphs

� chop up recorded data into tiny clips
� aim to cut at common poses

� build graph on clips: connect two clips if the
end pose of one is similar to the start pose of
another

� then walk the graph
� figure out smooth transitions from clip to clip
� navigate a small finite graph instead of infinite

space of all possible motions

��

Physics-based modeling
� like procedural modeling, only based on laws of

physics
� if you want realistic motion, simulate reality
� human motion:

� specify muscle forces (joint torques), simulate actual
motion

� has to conserve momentum etc.
� can handle the unexpected (e.g. a tackle)
� but need to write motion controllers

� passive motion:
� figure out physical laws behind natural phenomena
� simulate (close cousin of scientific computing)

��

Advanced Rendering

�

Reading

� FCG Chapter 9: Ray Tracing
� only 9.1-9.7

� FCG Chap 22: Image-Based Rendering

�	

Errata

� p 155
� line 1: p(t)=e+td, not p(t)=o+td
� equation 5: 2nd term 2d*(e-c), not 2d*(o-e)

� p 157
� matrices: cx->xc, cy->yc, cz->zc

� p 162
� r = d – 2(d.n)n, not r = d + 2(d.n)n

� p 163
� eqn 4 last term: n cos θ not n cos θ ’
� eqn 5: no θ term at end

��

Global Illumination Models

� simple shading methods simulate local
illumination models
� no object-object interaction

� global illumination models
� more realism, more computation

� approaches
� ray tracing
� subsurface scattering
� radiosity

��

Simple Ray Tracing

� view dependent method
� cast a ray from viewer’s

eye through each pixel
� compute intersection of

ray with first object in
scene

� cast ray from
intersection point on
object to light sources

projection
reference
point

pixel positions
on projection
plane

��

Recursive Ray Tracing
� ray tracing can handle

� reflection (chrome)
� refraction (glass)
� shadows

� spawn secondary rays
� reflection, refraction

� if another object is hit,
recurse to find its color

� shadow
� cast ray from intersection

point to light source, check
if intersects another object

projection
reference
point

pixel positions
on projection
plane

��

Reflection

� mirror effects
� perfect specular reflection

n

θ θ

��

Refraction

� happens at interface
between transparent object
and surrounding medium
� e.g. glass/air boundary

� Snell’s Law
�

� light ray bends based on
refractive indices c1, c2

2211 sinsin θθ cc =

n

θ 1

θ 2

d

t

��

Total Internal Reflection

http://www.physicsclassroom.com/Class/refrn/U14L3b.html

��

Ray Tracing Algorithm

Whitted, 1980

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

Shadow
Rays

��

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin

if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));

else
reflect_color := Black;

if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));

else
refract_color := Black;

return Shade(reflect_color,refract_color,obj);
end;

�

Algorithm Termination Criteria

� termination criteria
� no intersection
� reach maximal depth

� number of bounces
� contribution of secondary ray attenuated

below threshold
� each reflection/refraction attenuates ray

�	

Ray - Object Intersections

� inner loop of ray-tracing
� must be extremely efficient

� solve a set of equations
� ray-sphere
� ray-triangle
� ray-polygon

��

Ray - Sphere Intersection

� ray:

� unit sphere:

� quadratic equation in t:

x t p v t y t p v t z t p v tx x y y z z() , () , ()= + = + = +

p

v

x y z2 2 2 1+ + =

0 1

2

1

2 2 2

2 2 2 2

2 2 2

= + + + + + −

= + + + + +

+ + + −

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

��

Optimized Ray-Tracing

� basic algorithm simple but very expensive
� optimize by reducing:

� number of rays traced
� number of ray-object intersection calculations

� methods
� bounding volumes: boxes, spheres
� spatial subdivision

� uniform
� BSP trees

� (not required reading)

��

Subsurface Scattering: Translucency

� light enters and leaves at different locations
on the surface
� bounces around inside

� technical Academy Award, 2003
� Jensen, Marschner, Hanrahan

��

Subsurface Scattering: Marble

��

Subsurface Scattering: Milk vs. Paint

��

Subsurface Scattering: Faces

��

Subsurface Scattering: Faces

��

Radiosity

� radiosity definition
� rate at which energy emitted or reflected by a surface

� radiosity methods
� capture diffuse-diffuse bouncing of light

� indirect effects difficult to handle with raytracing

�

Radiosity

� recall radiative heat transfer

� conserve light energy in a volume
� model light transport until convergence
� solution captures diffuse-diffuse bouncing of light

� view independent technique
� calculate solution for entire scene offline
� browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

�	

Radiosity

[IBM][IBM]

� divide surfaces into small patches
� loop: check for light exchange between all pairs

� form factor: orientation of one patch wrt other patch (n x n matrix)

��

Raytracing vs. Radiosity Comparison

� ray-tracing: great specular, approx. diffuse
� view dependent

� radiosity: great diffuse, specular ignored
� view independent, mostly-enclosed volumes

� advanced hybrids: combine them

raytraced radiosity

��

Image-Based Rendering

� store and access only pixels
� no geometry, no light simulation, ...
� input: set of images
� output: image from new viewpoint

� surprisingly large set of possible new viewpoints

��

IBR Characteristics

� display time not tied to scene complexity
� expensive rendering or real photographs

� massive compression possible (120:1)

� can point camera in or out
� QuickTimeVR: camera rotates, no translation

��

Characterizing Light

� 7D plenoptic function: P(x, y, z, θ, φ, λ, t)
� (x,y,z): every position in space
� (θ, φ): every angle
� λ: every wavelength of light
� t: every time

� can simplify to 4D function
� fix time: static scene
� fix wavelength: static lighting
� partially fix position: empty space between

camera and object

��

4D Light Field / Lumigraph

� P(u,v,s,t)
� images: just one kind of 2D slice

��

Non-Photorealistic Rendering

� look of hand-drawn sketches or paintings

www.red3d.com/cwr/npr/

��

NPRQuake

www.cs.wisc.edu/graphics/Gallery/NPRQuake/

��

Advanced Rendering

� so many more algorithms, so little class time!
� Renderman REYES
� photon mapping
� and lots more...

�

Final Review

�	

Final Logistics

� 12:0pm-2:30pm Thu Jun 16 here (MCLD 202)
� notes: both sides 8.5”x11” handwritten page
� calculator OK if you want
� have photo ID face up on desk
� spread out, sit where there is an exam

��

Reading from OpenGL Red Book
� 1: Introduction to OpenGL
� 2: State Management and Drawing Geometric Objects
� 3: Viewing
� 4: Display Lists
� 6: Lighting
� 9: Texture Mapping
� 12: Selection and Feedback
� 13: Now That You Know

� only section Object Selection Using the Back Buffer
� Appendix: Basics of GLUT (Aux in v 1.1)
� Appendix: Homogeneous Coordinates and Transformation

Matrices

��

Reading from Shirley: Foundations of CG

� 2: Misc Math
� 3: Raster Algs

� except for 3.8
� 4: Linear Algebra

� only 4.1-4.2.5
� 5: Transforms

� except 5.1.6
� 6: Viewing
� 7: Hidden Surfaces
� 8: Surface Shading
� 9: Ray Tracing

� only 9.1-9.7

� 10: Texture Mapping
� 11: Graphics Pipeline

� only 11.1-11.4
� 12: Data Structures

� only 12.3
� 13: Curves and Surfaces
� 17: Human Vision
� 18: Color

� only 18.1-18.8
� 22: Image-Based Rendering
� 23: Visualization

��

Studying Advice

� do problems!
� work through old homeworks, exams

��

Midterm Topics Covered

� rendering pipeline
� projective rendering pipeline

� coordinate systems
� transformations
� viewing
� projections

��

Review: Rendering Pipeline

� pros and cons of pipeline approach

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

��

Review: Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world
viewing/
camera

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatef(x,y,zglTranslatef(x,y,z))
glRotatef(th,x,y,zglRotatef(th,x,y,z))
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSize(w,hglutInitWindowSize(w,h))
glViewport(x,y,a,bglViewport(x,y,a,b))

��

Review: Transformations, Homog. Coords

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

11
1

1
1

1
'
'
'

z
y

x

c
b

a

z
y

x

translate(a,b,c)translate(a,b,c)

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

−
=

�
�
�
�

�

�

�
�
�
�

�

�

11
cossin

sincos
1

1
'

'
'

z

y

x

z

y

x

θθ
θθ

),(Rotate θx

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

111
'
'

'

z

y

x

c

b

a

z

y

x

scale(a,b,c)scale(a,b,c)

�
�
�
�

�

�

�
�
�
�

�

�

−
1

cossin
1

sincos

θθ

θθ

),(Rotate θy

�
�
�
�

�

�

�
�
�
�

�

� −

1
1

cossin
sincos

θθ
θθ

),(Rotate θz

yy

ww

w=w=11

�
�
�

�

�

�
�
�

�

�

⋅
⋅

w

wy

wx

�
�
�

�

�

�
�
�

�

�

⋅
⋅

w

wy

wx

�
�
�

�

�

�
�
�

�

�

1
y
x

�
�
�

�

�

�
�
�

�

�

1
y
x

��

Review: Transforming View Volumes

x

z

NDCS y

(-1,-1,-1)

(1,1,1)

orthographic view volumeorthographic view volume

x

z

VCS

y
x=left

y=top

x=right

z=-far
z=-neary=bottom

perspective view volumeperspective view volume

x=left

x=right

y=top

y=bottom z=-near z=-farx
VCS

y

�

Review: Basic Perspective Projection

similar trianglessimilar triangles

→=
z
y

d
y'

z
dy

y
⋅='

zz

P(x,y,z)P(x,y,z)

P(x’,y’,dP(x’,y’,d))

z=dz=d

yy

alsoalso
z
dx

x
⋅='

� nonuniform foreshortening
� not affine

dz ='butbut

�	

Post-Midterm Topics Covered
� rasterization
� interpolation/bary coords
� color
� lighting
� shading
� compositing
� clipping
� curves
� picking
� collision

� textures
� procedural approaches
� sampling
� virtual trackball
� visibility
� scientific visualization
� information visualization
� advanced rendering
� animation

��

Review: Rasterization
� lines: midpoint algorithm

� optimized: Bresenham

� polygons

� flood fill

� scanline algorithms

� parity test for general case

1

2

3

4

5=0
P

��

Review: Barycentric Coordinates

� weighted combination of vertices

321 PPPP ⋅+⋅+⋅= γβα

1P

3P

2P

P

(1,0,0)(1,0,0)

(0,1,0)(0,1,0)

(0,0,1)(0,0,1) 5.0=β

1=β

0=β
1,,0

1
≤≤

=++
γβα

γβα

““convex combinationconvex combination
of points”of points”

��

Review: Color
� color perception

� color is combination of
stimuli from 3 cones

� metamer: identically
perceived color caused by
very different spectra

� simple model: based on
RGB triples

� component-wise
multiplication of colors
� (a0,a1,a2) * (b0,b1,b2) =

(a0*b0, a1*b1, a2*b2)

��

Review: Lighting

Idiffuse = kd Ilight (n • l)

nl

θ

R = 2 (N (N · L)) – L

Ispecular = ksIlight (v• r)
nshiny

Itotal = ksIambient + Ii (
i=1

lights

� kd (n• li) + ks(v •ri)
nshiny)

� reflection equations

� full Phong lighting model
� combine ambient, diffuse, specular components

��

Review: Shading Models

� flat shading
� compute Phong lighting once for entire

polygon
� Gouraud shading

� compute Phong lighting at the vertices and
interpolate lighting values across polygon

� Phong shading
� compute averaged vertex normals
� interpolate normals across polygon and

perform Phong lighting across polygon

��

Review: Compositing
� specify opacity with alpha channel: (r,g,b,α)

� α=1: opaque, α=.5: translucent, α=0: transparent
� A over B

� C = αA + (1-α)B
� premultiplying by alpha

� C’ = γ C, B’ = βB, A’ = αA
� C’ = B’ + A’ - αB’
� γ = β + α – αβ

��

Review: Clipping
� Cohen Sutherland lines: combining trivial accepts/rejects

� trivially accept lines: both endpoints inside all edges
� outcode test: OC(p1)== 0 && OC(p2)==0

� trivially reject lines: both endpoints outside same edge
� outcode test: OC(p1) & OC(p2))!= 0 reject

� otherwise, reduce to trivial: splitting into two segments

� Sutherman-Hodgeman polygons
� for each viewport edge: clip polygon against edge
� process input edge list to make output edge list
� inside or outside status between each vertex pair

��

Review: Curves
� Hermite

� endpoints and their derivatives
� Bezier

� four control points
� curve remains within their convex hull
� subdivision construction

� continuity
� C0: share join point
� C1: share continuous derivatives
� C2: share continuous second derivatives

� B-splines
� locality of control point influence

P0

P1 P2

P3

M01

M12

M23
t=0.25

�

Review: Picking

� manual ray intersection

� bounding extents

� backbuffer coding

� select/hit

xVCS

y

�	

Review: Collision Detection
� naive approach very expensive: O(n2)

� collision proxies

� spatial data structures to localize

� temporal sampling, fast moving objects

� responding to collisions

��

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(4,4)(4,0)

(0,4)(0,0)

(1,0)

(0,0) (0,1)

(1,1)

Review: Textures

��

Review: Procedural Approaches
� Perlin noise
� coherency: smooth not abrupt changes
� turbulence: multiple feature sizes

� particle systems

� fractal landscapes

� L-systems

��

Review: Sampling

� Shannon Sampling Theorem
� continuous signal can be completely recovered from

its samples iff sampling rate greater than twice
maximum frequency present in signal

� sample past Nyquist Rate to avoid aliasing
� twice the highest frequency component in the

image’s spectrum

��

Review: Virtual Trackball Rotation
� correspondence:

� moving point on plane from (x, 0, z) to (a, 0, c)
� moving point on ball from p1 =(x, y, z) to p2 =(a, b, c)

� correspondence:
� translating mouse from p1 (mouse down) to p2 (mouse up)
� rotating about axis n = p1 x p2 by arccos(p1 • p2 / |p1| |p2|)

��

Review: Visibility

� painter’s algorithm
� back to front, incorrect

� BSP trees
� build, then traverse

� Warnock’s algorithm
� subdivide viewport

� Z-buffer
� depth buffer in addition to framebuffer

� backface culling
� optimization for closed objects

��

Review: Scientific Visualization

� volume graphics
� isosurfaces

� extracting with Marching Cubes
� direct volume rendering

� transfer functions to classify

��

Review: Information Visualization

� interactive visual representation of abstract data
� help human perform some task more effectively

� techniques
� overview, zoom and filter, details on demand
� focus+context
� linked views
� small multiples

� visual channels
� preattentive visual popout
� categorical, ordered, quantitative data types

��

Review: Animation
� traditional direct specification of motion curves

� key framing: straight-ahead, layering
� retiming
� inverse kinematics

� procedural modeling
� particle systems

� data-driven modeling
� motion capture

� physics-based modeling
� cloth, fluid simulation

	

Review: Advanced Rendering

� ray tracing
� reflection, refraction, hard shadows

� subsurface scattering
� marble, milk

� radiosity
� diffuse lighting, soft shadows

� image-based rendering
� store/access only pixels

	
	

Other Graphics Courses

� 424: Geometric Modelling
� not offered next year

� 426: Computer Animation
� will be offered next year

� 514: Image-Based Rendering - Heidrich
� 526: Algorithmic Animation- van de Panne
� 533A: Digital Geometry - Sheffer
� 533B: Animation Physics - Bridson
� 533C: Information Visualization - Munzner

