M University of British Columbia
R CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Sampling, Virtual Trackball, Hidden
Surfaces

Week 5, Tue Jun 7

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= Midterm handed back
= solutions posted
= distribution posted
= all grades so far posted
= P1 Hall of Fame posted
= P3 grading
= after 3:20
= P4 proposals
= email or conversation to all

H3 Corrections/Clarifications

= Q1 should be from +infinity, not -infinity
= Q 2-4 correction for point B

= Q7 clarified: only x and y coordinates are
given for P

= Q8 is deleted

Review: Tiled Texture Map

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

Texture (0,0) Object 1) Mapped Texiure

\4,4)

|

o

4,

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

+

L
Texture (0,0) Honiect ,4) Mepp

e

Review: Texture Coordinates

= texture image: 2D array of color values (texels)
= assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)
= use interpolated (s,t) for texel lookup at each pixel
= use value to modify a polygon’s color
= or other surface property

= specified by programmer or artist giTexcoordzs (s, t)
r glvVertexf (x,y,z,w)

Review: Fractional Texture Coordinates

texture
image

(0,1) (1,1) (0,.5) (-25,.5)
\
(0,0 (1,0) (0,0) (.25,0)

Page 1

Review: Texture

= action when s or t is outside [0...1] interval
= tiling
= clamping
= functions
= replace/decal
= modulate
= blend

= texture matrix stack
glMatrixMode(GL_TEXTURE) ;

Review: Basic OpenGL Texturing

= setup
= generate identifier: glGenTextures
» load image data: gl TexImage2D

= set texture parameters (tile/clamp/...):
glTexParameteri

= set texture drawing mode (modulate/replace/...):
glTexEnvf

= drawing
= enable: glEnable
= bind specific texture: g1BindTexture

= specify texture coordinates before each vertex:
glTexCoord2f

Review: Perspective Correct Interpolation

= screen space interpolation incorrect

_asylwy Bes /wty-s, Iw,

alwy+pBlw+ylw,

;

Review: Reconstruction

= how to deal with:
= pixels that are much larger than texels?
= apply filtering, “averaging”

= pixels that are much smaller than texels ?
= interpolate

Review: MIPmapping

= image pyramid, precompute averaged versions

Without MIP-mapping

With MIP-mapping'

Review: Bump Mapping: Normals As Texture

YA

= create illusion of complex) A

geometry model

= control shape effect by W
A

locally perturbing surface
normal

Page 2

Review: Environment Mapping

= cheap way to achieve reflective effect
= generate image of surrounding
= map to object as texture

Review: Sphere Mapping

= texture is distorted fish-eye view
= point camera at mirrored sphere
= spherical texture coordinates

Review: Cube Mapping

= 6 planar textures, sides of cube
= point camera outwards to 6 faces
= Use largest magnitude of vector to pick face
= other two coordinates for (s,t) texel location

Review: Volumetric Texture

= define texture pattern

over 3D domain - 3D

space containing the

object

= texture function can be
digitized or procedural

= for each point on object
compute texture from
point location in space

= 3D function p(x,y,z)

Review: Perlin Noise: Procedural Textures

function marble (point)
X = point.x + turbulence (point);

return marble_color(sin(x))

Review: Perlin Noise

= coherency: smooth not abrupt changes
= turbulence: multiple feature sizes

18

Page 3

Review: Generating Coherent Noise

= just three main ideas
= nice interpolation
= use vector offsets to make grid irregular
= optimization
= sneaky use of 1D arrays instead of 2D/3D one

Review: Procedural Modeling

= textures, geometry
= nonprocedural: explicitly stored in memory
= procedural approach
= compute something on the fly
= not load from disk
= often less memory cost
= visual richness
= adaptable precision
= noise, fractals, particle systems

Review: Language-Based Generation

= L-Systems
= F: forward, R: right, L: left —/\—5::;:::::,
= Koch snowflake: _/\j/\z_/_w
F = FLFRRFLF
= Mariano’s Bush: e |

F=FF-[-F+F+F]+[+F-F-F]
= angle 16

http://spanky.triumf.ca/iwww/fractint/Isys/plants.html

/Review: Fractal Terrain

~

= 1D: midpoint displacement ~
= divide in half, randomly displacg >
. sca.le variance by half .
= 2D: diamond-square / N
= generate new value at midpoint @
= average corner values + random displacement
= scale variance by half each time

N A

hnp://www.ggmeprogrammer.com/fractal.html

~

Review: Particle Systems

= changeable/fluid stuff

= fire, steam, smoke, water, grass, hair, dust,
waterfalls, fireworks, explosions, flocks

= life cycle
= generation, dynamics, death
= rendering tricks
= avoid hidden surface computations

~
)

Sampling

Page 4

Samples

most things in the real world are continuous
everything in a computer is discrete

the process of mapping a continuous function to a
discrete one is called sampling

the process of mapping a discrete function to a
continuous one is called reconstruction

the process of mapping a continuous variable to a
discrete one is called quantization

rendering an image requires sampling and
quantization

displaying an image involves reconstruction

Line Segments

= we tried to sample a line segment so it would
map to a 2D raster display

= we quantized the pixel values to 0 or 1
= we saw stair steps, or jaggies

Line Segments

= instead, quantize to many shades
= but what sampling algorithm is used?

LN

Unweighted Area Sampling

= shade pixels wrt area covered by thickened line
= equal areas cause equal intensity, regardless of
distance from pixel center to area
= rough approximation formulated by dividing each pixel
into a finer grid of pixels
= primitive cannot affect intensity of pixel if it does not
intersect the pixel

N\

<

Weighted Area Sampling

= intuitively, pixel cut through the center should be
more heavily weighted than one cut along corner
= weighting function, W(x,y)
= specifies the contribution of primitive passing through
the point (x, y) from pixel center

Intensity

Images

= an image is a 2D function I(x, y) that
specifies intensity for each point (x, y)

Image Sampling and Reconstruction

= convert continuous image to discrete set of
samples

= display hardware reconstructs samples into
continuous image

= finite sized source of light for each pixel

sadEansnlin

discrete input values continuous light output

Point Sampling an Image

= simplest sampling is on a grid

= sample depends
solely on value
at grid points

Sampling grid maps continuous to ﬂiﬁﬂ'e’ne
it

Point Sampling

= multiply sample grid by image intensity to
obtain a discrete set of points, or samples.

Image shown with sampling grid

: Sampling Geometry

Sampling Errors

= some objects missed entirely, others poorly sampled
= could try unweighted or weighted area sampling
= but how can we be sure we show everything?

= need to think about entire class of solutions!

Image As Signal

= image as spatial signal
= 2D raster image

= discrete sampling of 2D spatial signal
= 1D slice of raster image

= discrete sampling of 1D spatial signal

Intensity

|

Origina VW 4
signal i weal
Pixel position across scanline

Examples from Foley, van Dam, Feiner, and Hughes 35

Sampling Theory

= how would we generate a signal like this out
of simple building blocks?

= theorem

= any signal can be represented as an (infinite)
sum of sine waves at different frequencies

Page 6

Sampling Theory in a Nutshell

= terminology
= bandwidth — length of repeated sequence on
infinite signal
= frequency — 1/bandwidth (number of repeated
sequences in unit length)
= example — sine wave
= bandwidth = 2n
= frequency = 1/ 2w

sin(t) &vgdgv&

w
N

Summing Waves |

4 /\A/\/\/\/ /\/\/W\/
+
3 AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVIRRS
+
5 AV
+

2
:
9
0 2n 4an 6n 8n 10n 0 2n 4an 6n 8n 10n E

Summing Waves Il

0 5t n 152t O .5n n 1.5r2n 0 51 n 157 2n 0 5t n 15n2e

1D Sampling and Reconstruction

1D Sampling and Reconstruction

41

1D Sampling and Reconstruction

S\

42

Page 7

1D Sampling and Reconstruction

43

1D Sampling and Reconstruction

= problems
= jaggies — abrupt changes

1D Sampling and Reconstruction

= problems
= jaggies — abrupt changes
= lose data

<
\T/ VT

45

Sampling Theorem

continuous signal can be completely recovered
from its samples

iff
sampling rate greater than twice maximum
frequency present in signal

- Claude Shannon

Nyquist Rate

= lower bound on sampling rate

= twice the highest frequency component in the
image’s spectrum

47

Falling Below Nyquist Rate

= when sampling below Nyquist Rate, resulting
signal looks like a lower-frequency one

= this is aliasing!

7y

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colum=
bia University.)

Page 8

Nyquist Rate

My« 27

fymal

49

Aliasing

= incorrect appearance of high frequencies as
low frequencies

= to avoid: antialiasing
= supersample
= sample at higher frequency
= low pass filtering
= remove high frequency function parts
= aka prefiltering, band-limiting

Supersampling

No| anbaliasing

Low-Pass Filtering

Original
signal

l Low-pass filtering

Low-pass % i'
filtered %

signal

Low-Pass FiItering

m
| I
l L Il T

l Reconstruction

o W%
signal e

Fig. 14.20 The sampling pipeline with filtering. (Courtesy of George Wolberg
Columbia University.)

Filtering

= low pass
= blur

= high pass
= edge finding

Previous Antialiasing Example

= texture mipmapping: low pass filter

Virtual Trackball

Virtual Trackball

= interface for spinning objects around

= drag mouse to control rotation of view volume
= rolling glass trackball

= center at screen origin, surrounds world

= hemisphere “sticks up” in z, out of screen

= rotate ball = spin world

Virtual Trackball

= know screen click: (x, 0, z)
= want to infer point on trackball: (x,y,z)
= ball is unit sphere, so [|x, y, z|| = 1.0

= solve fory
y @ _eye

image plane

Trackball Rotation

= correspondence:
= moving point on plane from (x, 0, z) to (a, 0, ¢)
= moving point on ball from p; =(x, y, z) to p,=(a, b, c)
= correspondence:
= translating mouse from p; (mouse down) to p, (mouse up)
= rotating about the axis n = p; x p,

Trackball Computation

= user defines two points
= place where first clicked p; = (x, y, 2)
= place where released p, = (a, b, ¢)
= create plane from vectors between points, origin
= axis of rotation is plane normal: cross product
= (py.-0) X (ps. - 0): py x p,if origin = (0,0,0)
= amount of rotation depends on angle between
lines
= Pq* P2 =[P4 [P2| cOs 8
= [Py XP2| = [P4| P2l Sin 6
= compute rotation matrix, use to rotate world

Page 10

10

Visibility

61

Reading
= FCG Chapter 7

62

Rendering Pipeline

Geometry Model/View L Perspective _

Database || Transform, [~ Lighting = ¢ cform. [T CliPPing =H
Scan s Depth . Frame-

Conversion [~ Texturing (- Test |17 Blending buffer

63

Covered So Far

= modeling transformations
= viewing transformations
= projection transformations
= clipping
= scan conversion
= lighting
= shading
= we now know everything about how to draw a

polygon on the screen, except visible surface
determination

64

Invisible Primitives

= polygon outside the field of view / frustum
= solved by clipping
= polygon is backfacing
= solved by backface culling
= polygon is occluded by object(s) nearer the viewpoint
= solved by hidden surface removal
= for efficiency reasons, we want to avoid spending
work on polygons outside field of view or backfacing
= for efficiency and correctness reasons, we need to
know when polygons are occluded

65

Hidden Surface Removal

Page 11

11

Occlusion

= for most interesting scenes, some polygons

overlap
ki

= to render the correct image, we need to
determine which polygons occlude which

67

Painter’s Algorithm

= simple: render the polygons from back to
front, “painting over” previous polygons

==
= |45
= draw blue, then green, then orange
= will this work in the general case?

Painter’s Algorithm: Problems

= intersecting polygons present a problem

= even non-intersecting polygons can form a
cycle with no valid visibility order:

69

Analytic Visibility Algorithms

= early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the
fragments to a display:

Analytic Visibility Algorithms

= answer:
O(r?)

Analytic Visibility Algorithms

= S0, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

= we'll talk about two:
= Binary Space Partition (BSP) Trees
= Warnock’s Algorithm

Page 12

12

Binary Space Partition Trees (1979)

= BSP Tree: partition space with binary tree of

planes

= idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

= preprocessing: create binary tree of planes

= runtime: correctly traversing this tree
enumerates objects from back to front

Creating BSP Trees: Objects

®
oy

®
LB X

Creating BSP Trees: Objects

®

«cc®
®

e

€666 €EEE

Creating BSP Trees: Objects

e
Ly

e

Creating BSP Trees: Objects

v
o ® D

Creating BSP Trees: Objects

13

Splitting Objects

= NO bunnies were harmed in previous example

= but what if a splitting plane passes through
an object?

= split the object; give half to each node

e
® Y

Traversing BSP Trees

= tree creation independent of viewpoint

= preprocessing step
= tree traversal uses viewpoint

= runtime, happens for many different viewpoints
= each plane divides world into near and far

= for given viewpoint, decide which side is near and
which is far

= check which side of plane viewpoint is on
independently for each tree vertex

= tree traversal differs depending on viewpoint!
= recursive algorithm

= recurse on far side

= draw object

= recurse on near side

Traversing BSP Trees

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

renderBSP (BSPtree *T)

BSPtree *near, *far;

if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;

renderBSP (far) ;

if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

81

BSP Trees : Viewpoint A

82

BSP Trees : Viewpoint A

83

BSP Trees : Viewpoint A

» decide independently at
each tree vertex

= not just left or right child! &

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

Page 15

15

BSP Trees : Viewpoint A

92

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

91

BSP Trees : Viewpoint B

BSP Trees : Viewpoint A

93

BSP Trees : Viewpoint B

95

Page 16

16

BSP Tree Traversal: Polygons

= split along the plane defined by any polygon
from scene

= classify all polygons into positive or negative
half-space of the plane

= if a polygon intersects plane, split polygon into
two and classify them both

= recurse down the negative half-space
= recurse down the positive half-space

97

BSP Demo

= useful demo:
http://symbolcraft.com/graphics/bsp

98

Summary: BSP Trees

= pros:
= simple, elegant scheme

= correct version of painter’s algorithm back-to-front
rendering approach

= was very popular for video games (but getting less so)
= CONs:

= slow to construct tree: O(n log n) to split, sort

= splitting increases polygon count: O(n?) worst-case

= computationally intense preprocessing stage restricts
algorithm to static scenes

Warnock’s Algorithm (1969)

= based on a powerful general approach
common in graphics

= if the situation is too complex, subdivide

= BSP trees was object space approach
= Warnock is image space approach

Warnock’s Algorithm

= start with root viewport = .~ &

and list of all objects \ .
= recursion: 4 @ ('«
= clip objects to ! V¢
viewport A 4 | A |4
= if only 0 or 1 objects (1) 2

= done
= else ’ - *— ’ [TH;
= subdivide to new T i
smaller viewports _‘_2 ' _‘_£| V
= distribute objects to
new viewpoints ® (5)
= recurse

= termination >~v =
= viewport is single ' < [- <
pixel))
= explicitly check for A | | 4 A v
object occlusion 6] 2

Warnock’s Algorithm

17

Warnock’s Algorithm
= Pros:
= very elegant scheme
= extends to any primitive type
= CONs:

= hard to embed hierarchical schemes in
hardware

= complex scenes usually have small polygons
and high depth complexity (number of
polygons that overlap a single pixel)
= thus most screen regions come down to the
single-pixel case

103

The Z-Buffer Algorithm (mid-70’s)

= both BSP trees and Warnock’s algorithm
were proposed when memory was
expensive
= first 512x512 framebuffer was >$50,000!

= Ed Catmull proposed a radical new
approach called z-buffering.

= the big idea:

= resolve visibility independently at each
pixel

The Z-Buffer Algorithm

= we know how to rasterize polygons into an
image discretized into pixels:

8 [S

105

The Z-Buffer Algorithm

= what happens if multiple primitives occupy
the same pixel on the screen?

= which is allowed to paint the pixel?

B

50 5) S S

The Z-Buffer Algorithm

= idea: retain depth after projection transform
= each vertex maintains z coordinate
= relative to eye point
= can do this with canonical viewing volumes

107

The Z-Buffer Algorithm

= augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each

pixel

= at frame beginning, initialize all pixel depths
10

= when rasterizing, interpolate depth (2)
across polygon

= check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

= don’t write pixel if its Z value is more distant
than the Z value already stored there

108

Page 18

Interpolating Z

= edge equations: Z just another planar
parameter:
«z=(-D-Ax—-By)/C
= if walking across scanline by (D)

Znew = Zold — (A/C)(Dx) .
= total cost: 5;

= 1 more parameter to .
increment in inner loop ;

= 3x3 matrix multiply for setup

109

Z-Buffer

sstore (r,g,b,z) for each pixel
= typically 8+8+8+24 bits, can be more

for all i,j {
Depth[i, j] = MAX_DEPTH
Image[i, j] = BACKGROUND_COLOUR
}
for all polygons P {
for all pixels in P {
if (Z_pixel < Depthl[i, j]) {
Image[i, j] = C_pixel
Depth[i, j] = Z_pixel
}
}
}

111

Interpolating Z

= edge walking
= just interpolate Z along edges and across
spans
= barycentric coordinates
i
g

= interpolate Z like other
parameters

110

Depth Test Precision

= reminder: projective transformation maps
eye-space zto generic z-range (NDC)
= simple example:

x 1 0 0 Offx
y 01 0 Offy
z B 0 0 a b . z
1 0 0 -1 of|1
= thus: Zm;c=a Z@:"'b: _,_%

112

Depth Test Precision

= therefore, depth-buffer essentially stores 1/z,
rather than z!
= issue with integer depth buffers
= high precision for near objects
= low precision for far objects

ZNDC

|
{
z
: £ ey
o f 113

Depth Test Precision

= low precision can lead to depth fighting for far
objects
= two different depths in eye space get mapped to
same depth in framebuffer
= which object “wins” depends on drawing order
and scan-conversion
= gets worse for larger ratios f:n
= rule of thumb: f:n < 1000 for 24 bit depth buffer

= with 16 bits cannot discern millimeter
differences in objects at 1 km distance

114

Page 19

19

Z-Buffer Algorithm Questions

= how much memory does the Z-buffer use?

= does the image rendered depend on the
drawing order?

= does the time to render the image depend on
the drawing order?

= how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

115

Z-Buffer Pros

= simplelll

easy to implement in hardware

= hardware support in all graphics cards today
polygons can be processed in arbitrary order
easily handles polygon interpenetration

= enables deferred shading

= rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

116

Z-Buffer Cons

= poor for scenes with high depth complexity

= need to render all polygons, even if
most are invisible

LG
eye

= shared edges are handled inconsistently
= ordering dependent

117

Z-Buffer Cons

= requires lots of memory
= (e.g. 1280x1024x32 bits)
= requires fast memory
= Read-Modify-Write in inner loop
= hard to simulate translucent polygons
= we throw away color of polygons behind
closest one
= works if polygons ordered back-to-front

= extra work throws away much of the speed
advantage

118

Hidden Surface Removal

= two kinds of visibility algorithms
= object space methods
= image space methods

119

Object Space Algorithms

= determine visibility on object or polygon level
= Using camera coordinates
resolution independent
= explicitly compute visible portions of polygons
early in pipeline
= after clipping
= requires depth-sorting
= painter’s algorithm
= BSP trees

120

Page 20

20

Image Space Algorithms

= perform visibility test for in screen coordinates
= limited to resolution of display
= Z-buffer: check every pixel independently
= Warnock: check up to single pixels if needed

= performed late in rendering pipeline

121

Projective Rendering Pipeline

glVertex3f(x,y,z)
object world viewing

alter w
wes ves S— glFrustum(...
viewing prmectlor_\
transformation| | transformation

modeling
transformation

clipping
glTranslatef(x,y,z) gluLookAt(...) ces
glRotatef(th,x,y,z) _
perspective lized
i i division [normalize:
OCS - object coordinate SyStenéIutlnitWindowSize(w,h) device
WCS - world coordinate system glViewport(x,y,a,b) l NDCS
VCS - viewing coordinate system wewport_
transformation
CCS - clipping coordinate system device
DCS

NDCS - normalized device coordinate system

DCS - device coordinate system 12

Rendering Pipeline

Backface Culling

124

object world viewing clipping
CS WCS VCS CCS
& t Model/View o Perspective S w
D::a"l;:;ey Transform, [~ LOMING = 1rongtorm. [CliPPing =
(4D)
normalized
device
NDCS
screen
) SCS
device
pcs (3D) 2D)
S s _ Frame-
COnv?r:ion [~ Texturing |- D_;;:s::. [T Blending buffer
123
Back-Face Culling

= on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

ﬁ! -
f —_— >
note: backface culling

— : alone doesn’t solve the
hidden-surface problem!

125

Back-Face Culling

= not rendering backfacing polygons improves
performance
= by how much?

= reduces by about half the number of polygons
to be considered for each pixel

= optimization when appropriate

126

Page 21

Back-Face Culling

= most objects in scene are typically “solid”
= rigorously: orientable closed manifolds
= orientable: must have two distinct sides
= cannot self-intersect
= a sphere is orientable since has
two sides, 'inside’ and 'outside'.
= a Mobius strip or a Klein bottle is
not orientable
= closed: cannot “walk” from one
side to the other
= sphere is closed manifold
= plane is not

Manifold

= examples of manifold objects:
= sphere
= torus

« well-formed
CAD part

129

Back-face Culling: VCS

firstidea:
cullit N, <0
Yy e
oW sometimes
misses polygons that
z eye should be culled
better idea:

cull if eye is below polygon plane

131

Back-Face Culling

= most objects in scene are typically “solid”
= rigorously: orientable closed manifolds
= manifold: local neighborhood of all points isomorphic to
disc
= boundary partitions space into interior & exterior

-3

Yes No

. ng “ ".
&

128

Back-Face Culling

= examples of non-manifold objects: u
= asingle polygon
= aterrain or height field
= polyhedron w/ missing face
= anything with cracks or holes in boundary
= one-polygon thick lampshade

130

Back-face Culling: NDCS

vCs

\

NDCS
t

eye @/ works to cullif N, >0

132

Page 22

22

