University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Textures, Procedural Approaches,
Sampling

Week 4, Thu Jun 2

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Review: Picking Methods

= manual ray intersection

= bounding extents

= backbuffer coding

. . : |
2

Review: Select/Hit Picking

assign (hierarchical) integer key/name(s)
small region around cursor as new viewport

redraw in selection mode
= equivalent to casting pick “tube”
= store keys, depth for drawn objects in hit list

examine hit list

= usually use frontmost, but up to application

3

Review: Collision Detection

= boundary check
= perimeter of world vs. viewpoint or objects
= 2D/3D absolute coordinates for bounds
= Simple point in space for viewpoint/objects
= set of fixed barriers
« walls in maze game
« 2D/3D absolute coordinate system
= set of moveable objects
= one object against set of items
= Missile vs. several tanks
= multiple objects against each other
= punching game: arms and legs of players
= room of bouncing balls

Review: Collision Proxy Tradeoffs

= collision proxy (bounding volume) Is piece of geometry used
to represent complex object for purposes of finding collision

= proxies exploit facts about human perception
= we are bad at determining collision correctness
= especially many things happening quickly

il

Sphere AABB 6-dop Convex Hull

iIncreasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

Review: Spatial Data Structures

uniform grids BSP trees

Review: Exploiting Coherence

= player normally doesn’t move far between
frames

= tfrack incremental changes, using previous
results instead of doing full search each time

= keep track of entry and exit into cells through
portals

= probably the same cells they intersect now
= Or moved to neighbor

Review: Precise Collisions

= hacked clean up
= simply move position so that objects just touch, leave time the

same .
= Interval halving ‘ﬂ

= binary search through time to find exact collision point and time

t=0.5625 t=0.5——

— 1=0.625 ——

Review: Fast-Moving Objects

= temporal sampling
= aliasing: can miss collision completely!

= movement line H
= conservative prediction

= assume maximum velocity, smallest feature size
= Increase temporal and spatial sampling rate

= simple alternative: just miss the hard cases
= player may not notice!

Review: Collision Response

= frustrating to just stop player
= often move tangentially to obstacle

= recursively to catch all collisions
= handling multiple simultaneous contacts

10

Texturing

11

Reading

= FCG Chapter 10
= Red Book Chapter Texture Mapping

12

Rendering Pipeline

Geometry | || Model/View <y Perspective —

Database Transform. Lighting Transform. Clipping
! Scan Texturing 4| Depth Blendi Frame-

Conversion 9 Test ending butter

13

Texture Mapping

= real life objects have
nonuniform colors,
normals

= {0 generate realistic
objects, reproduce
coloring & normal
variations = texture

= can often replace
complex geometric
details

14

Texture Mapping

= introduced to increase realism
= lighting/shading models not enough
= hide geometric simplicity
= Images convey illusion of geometry
= map a brick wall texture on a flat polygon
= create bumpy effect on surface
= associate 2D information with 3D surface

= point on surface corresponds to a point in
texture

= “paint” image onto polygon

15

Color Texture Mapping

= define color (RGB) for each point on object
surface

= two approaches
= surface texture map
= volumetric texture

Texture Coordinates

= texture image: 2D array of color values (texels)

= assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)
= use interpolated (s,t) for texel lookup at each pixel

= use value to modify a polygon’s color
= Or other surface property

= specified by programmer or artist girexcoordzs (s, t)
glVertexf (x,y, z,w)

17

Texture Mapping Example

18

Example Texture Map

,[X

Ls glTexCoord2d(1,1); b z
glVertex3d (0, 2, 2);

ool t \ VI

(0, 0) HU 0) / \\

ngexCoordZd(0,0),
glVertex3d (0, -2, -2);
Texture Object Mapped Texture
19

Fractional Texture Coordinates

texture
image

(0,.5) (.25,.5)

(0,0) (1,0) (0,0) (.25,0)

20

Texture Lookup: Tiling and Clamping

= what if s or t is outside the interval [0...1]?

= multiple choices

= use fractional part of texture coordinates

= cyclic repetition of texture to tile whole surface
glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

= clamp every component to range [0...1]

= re-use color values from texture image border
glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

21

Tiled Texture Map

mn)

T

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

-

(0,0) Object ,1) Mapped Texture

(4,0
glTexCoord2d(4, 4); +
glVertex3d (x, y, 2);

Texture (0,0) Object ,4) Mapped Texture

Texture

Demo

23

Texture Coordinate Transformation

= motivation

= change scale, orientation of texture on an object
= approach

= texture matrix stack

« transforms specified (or generated) tex coords
glMatrixMode (GL_TEXTURE) ;

glLoadIdentity () ;
glRotate() ;

=« more flexible than changing (s,t) coordinates
= [demo]

24

Texture Functions

= once have value from the texture map, can:

« directly use as surface color: GL_REPLACE
= throw away old color, lose lighting effects

= modulate surface color: GI._MODULATE
= multiply old color by new value, keep lighting info
« texturing happens after lighting, not relit

= use as surface color, modulate alpha: GL._DECAL
= like replace, but supports texture transparency

= blend surface color with another: GL_BLEND

=« hew value controls which of 2 colors to use
=« indirection, new value not used directly for coloring

= Specify with g1 TexEnvi (GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE, <mode>)
25

Texture Pipeline

(x,, 2) (s, t) (s’, t')
Object position — Parameter space — Transformed ——

(-2.3,7.1,17.7) (0.32, 0.29) parameter space
(0.52, 0.49)
Texel space Texel color Final color

(81, 74) (0.9,0.8,0.7) / (0.45,0.4,0.35)
Object color

(0.5,0.5,0.5)

26

Texture Objects and Binding

= texture object

= an OpenGL data type that keeps textures resident in
memory and provides identifiers to easily access
them

« provides efficiency gains over having to repeatedly
load and reload a texture

= YOu can prioritize textures to keep in memory

= OpenGL uses least recently used (LRU) if no priority
IS assigned

= texture binding
= which texture to use right now

= switch between preloaded textures .

Basic OpenGL Texturing

= create a texture object and fill it with texture data:

= glGenTextures (num, &indices) to get identifiers for the
objects

= glBindTexture (GL_TEXTURE_2D, identifier) to bind
=« following texture commands refer to the bound texture

» glTexParameteri (GL_TEXTURE_2D, .., ..) to specify
parameters for use when applying the texture
» glTexImage2D (GL_TEXTURE_2D, ...) to specify the

texture data (the image itself)
= enable texturing: glEnable (GL_TEXTURE_2D)

= State how the texture will be used:
= glTexEnvf (...)

= specify texture coordinates for the polygon:
= UsSe glTexCoord2f (s, t) before each vertex:

» glTexCoord2f(0,0); glVertex3f(x,y,z);)8

Low-Level Details

= large range of functions for controlling layout of texture data

= state how the data in your image is arranged

s €.0..glPixelStorei (GL_UNPACK_ALIGNMENT, 1) tells
OpenGL not to skip bytes at the end of a row

= you must state how you want the texture to be put in memory:
how many bits per “pixel”, which channels,...

= textures must be square and size a power of 2
= common sizes are 32x32, 64x64, 256x256

= smaller uses less memory, and there is a finite amount of
texture memory on graphics cards

= OK to use texture template sample code for project 4
= http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

29

Texture Mapping

s texture coordinates

= specified at vertices
glTexCoord2f (s, t);

glVertexf (x,y, z) ;

= interpolated across triangle (like R,G,B,Z)
= ...well not quite!

30

Texture Mapping

= texture coordinate interpolation
= perspective foreshortening problem

31

Interpolation: Screen vs. World Space

= Screen space interpolation incorrect

= problem ignored with shading, but artifacts
more visible with texturing |Pxy.2) |

32

Texture Coordinate Interpolation
= perspective correct interpolation
= O B! Y-
= barycentric coordinates of a point P in a triangle
= SO, s1, s2:
« texture coordinates of vertices
= WO, wi,w2:

=« homogeneous coordinates of vertices

(s1,t1)
(x1,y1,z1,w1)

(s2,t2)

a-syIwy+Ls Iw+y-s, Iw,

\)
(x2,y2,22,w2) (s0,0) alwy+pBIw +ylw,
(x0,y0,z0,w0)

33

Reconstruction

H

ot Roby | DT |||]|

2 [3|« |l

(image courtesy of Kiriakos Kutulakos, U Rochester)

34

Reconstruction

= how to deal with:

= pixels that are much larger than texels?
= apply filtering, “averaging”

= pixels that are much smaller than texels ?
= Interpolate

35

MIPmapping

use “image pyramid” to precompute
averaged versions of the texture

Without MIP-mapping

store whole pyramid in B

single block of memory

With MIP-mapping’

MIPmaps

= multum in parvo -- many things in a small place

= prespecify a series of prefiltered texture maps of
decreasing resolutions

= requires more texture storage

= avoid shimmering and flashing as objects move
m gluBuildZDMipmaps

= automatically constructs a family of textures from
original texture size down to 1x1

without

37

MIPmap storage

= only 1/3 more space required

38

Texture Parameters

= In addition to color can control other
material/object properties

= surface normal (bump mapping)
= reflected color (environment mapping)

39

Bump Mapping: Normals As Texture

= Object surface often not smooth — to recreate correctly
need complex geometry model

= can control shape “effect” by locally perturbing surface
normal

= random perturbation
= directional change over region

Bump Mapping

bt ow

Original surface

B(u)

| W A bump map

Bump Mapping

0'(u)

Lengthening or shortening
() using B(u)

N'(u)

The vectors to the

o

‘new’ surface

Embossing

= at transitions
= rotate point’s surface normal by 6 or - 6

43

Dlsplacement Mapplng

= bump mapping gets
silhouettes wrong

= shadows wrong too
= change surface
geometry instead

= only recently
available with
realtime graphics

= heed to subdivide
surface

Environment Mapping

= cheap way to achieve reflective effect
= generate image of surrounding
= map to object as texture

45

Environment Mapping

= used to model object that reflects
surrounding textures to the eye

= movie example: cyborg in Terminator 2
= different approaches

= sphere, cube most popular
= OpenGL support

= GL_SPHERE_MAP, GL_CUBE_MAP
= others possible too

46

Sphere Mapping

= texture is distorted fish-eye view
= point camera at mirrored sphere

« spherical texture mapping creates texture
coordinates that correctly index into this texture map

Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin

Cube Mapping

R

49

Cube Mapping

s direction of reflection vector r selects the face of the
cube to be indexed

= co-ordinate with largest magnitude
= €.9., the vector (-0.2, 0.5, -0.84) selects the —Z face

= remaining two coordinates (normalized by the 3
coordinate) selects the pixel from the face.

= €.9., (-0.2, 0.5) gets mapped to (0.38, 0.80).

= difficulty in interpolating across faces

50

Blinn/Newell Latitude Mapping

Review: Texture Objects and Binding

= texture objects
« texture management: switch with bind, not reloading
= can prioritize textures to keep in memory

= Q: what happens to textures kicked out of memory?

« A: resident memory (on graphics card) vs.
nonresident (on CPU)

=« details hidden from developers by OpenGL

52

Volumetric Texture

= define texture pattern
over 3D domain - 3D
space containing the
object
= texture function can be
digitized or procedural

« for each point on object
compute texture from
point location in space

= common for natural
material/irregular textures
(stone, wood,etc...)

mapping mapping

Marble

Volumetric Texture Principles

= 3D function p

= P =p(X.Y,2)
= texture space — 3D space that holds the
texture (discrete or continuous)

= rendering: for each rendered point P(x,y,z)
compute o¢x,y,z)

= vVolumetric texture mapping function/space
transformed with objects

55

Procedural Textures

= generate “image” on the fly, instead of
loading from disk

= often saves space
= allows arbitrary level of detall

56

Procedural Texture Effects: Bombing

= randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table
« for point P search table and determine if inside shape
= if s0, color by shape
= Ootherwise, color by objects color

57

Procedural Texture Effects

= Simple marble

function boring _marble (point)
X = polnt.x;
return marble color(sin(x));
// marble_color maps scalars to colors

58

Perlin Noise: Procedural Textures

= several good explanations
=« FCG Section 10.1

= http://www.noisemachine.com/talk1
= http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
= http://www.robo-murito.net/code/perlin-noise-math-fag.html

http://mrl.nyu.edu/~perlin/planet/ sg

Perlin Noise: Coherency

= smooth not abrupt changes

coherent white noise

] P G B
I_II- _‘F'I'I .-:I-. Lol 1
oy el | T

60

Perlin Noise: Turbulence

= multiple feature sizes
= add scaled copies of noise

Amplitude - 128
frequency : 4

-

Amplitude - 16
frequency © 32

T g e A = o
T T e e — __v_.ﬂ_'x\\

Amplitude - 64

frequency : 8
/_/—\.\ \-_FF‘/’_'_,_
Amplitude - 8
frequency : B4
LR R A AT N unv%ﬂw,_n‘__.-.___ﬁ-.

Sum of Noise Functions = (Perlin Noise)

Amplitude - 32
frequency : 16

Amplitude - 4
frequency : 128

61

Perlin Noise: Turbulence

= multiple feature sizes
= add scaled copies of noise

62

Perlin Noise: Turbulence

= multiple feature sizes
= add scaled copies of noise

function turbulence (p)

t = 0; scale = 1;
while (scale > pixelsize) {

t +=
abs (Noise (p/scale) *scale) ;

scale/=2;

} return t;

63

Generating Coherent Noise

= just three main ideas
= nice interpolation
= Use vector offsets to make grid irregular
= optmization
= Sheaky use of 1D arrays instead of 2D/3D one

64

Interpolating Textures

= nearest neighbor
= bilinear
s hermite

65

Vector Offsets From Grid

= weighted average of gradients

= random unit vectors g(x1,y1)
(x0, ¥1) (%1, v1)
gix1,y0) !
I:-:'“:I.l ."'-I':I..:I |:.'3':-'1_. y0) 0

g(x0,y0]

Optimization

= save memory and time

= conceptually:
= 2D or 3D grid
= populate with random number generator

= actually:

= precompute two 1D arrays of size n (typical size 256)
= random unit vectors
« permutation of integers 0 to n-1

= lookup
« g0, K=G[(i+ P (j+ P[K]) modn]) modn]

67

Perlin Marble
= use turbulence, which in turn uses noise:

function marble (point)

x = point.x + turbulence (point);

return marble color (sin(x))

68

Procedural Approaches

69

Procedural Modeling

= fextures, geometry
= nonprocedural: explicitly stored in memory

= procedural approach
= compute something on the fly
= often less memory cost
= visual richness

= fractals, particle systems, noise

70

Fractal Landscapes

= fractals: not just for “showing math”
= triangle subdivision
= vertex displacement
= recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

71

Self-Similarity

infinite nesting of structure on all scales

o Ard ot o Arnd

i P v £ £ P P i E R0 E R PR ey

oo e
Pt it
: W ni
e e
EE&E&E&E&?&E&?&E&HH?&E&E&EE&EEEEE EE&EE&EEEE&&EE&?&E&?&E&HH?&E&E&EE&E

o A Pt ot o ot ol Dt ot ot Pt A Al d ot R A ot 3 ot A At ol Pt el ot Jofed At A oA rd A

72

Fractal Dimension

= D =log(N)/log(r)
N = measure, r = subdivision scale
= Hausdorff dimension: noninteger

Koch snowflake

Initiator
. . . Length=1
coastline of Britain
:
o
o
b v LT3
LR g
T e S Ty P I PR TS
i e
iEriE Bt Level 2
: i e Lenutheolé /o
i P g
R e
Lewvel 3
Length=ﬁ&!2?|

D = log(N)/log(r) D = log(4)/log(3) = 1.26
http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html 73

Language-Based Generation

s L-Systems: after Lindenmayer

= Koch snowflake: F :- FLFRRFLF
= F: forward, R: right, L: left

=« Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
= angle 16

http://spanky.triumf.ca/www/fractint/Isys/plants.html

74

1D: Midpoint Displacement

= divide in half
= randomly displace
= Scale variance by half

T T
A

T

http://www.gameprogrammer.com/fractal.html

75

2D: Diamond-Square

= diamond step

= generate a new value at square midpoint
= average corner values + random amount
= gives diamonds when have multiple squares in grid

= square step

= generate new value at diamond midpoint
= average corner values + random amount
= gives squares again in grid

N A

76

Particle Systems

= loosely defined

= modeling, or rendering, or animation
= key criteria

= collection of particles

= random element controls attributes

= position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

= predefined stochastic limits: bounds, variance,
type of distribution

77

Particle System Examples

= Objects changing fluidly over time
= fire, steam, smoke, water
= Objects fluid in form &=
= grass, hair, dust |
= physical processes
= waterfalls, fireworks, explosions
= group dynamics: behavioral

= birds/bats flock, fish school,
human crowd, dinosaur/elephant stampede

78

Particle Systems Demos

= general particle systems
s hitp://www.wondertouch.com

= boids: bird-like objects
s hitp://www.red3d.com/cwr/boids/

79

Particle Life Cycle

= generation
= randomly within “fuzzy” location
= Initial attribute values: random or fixed
= dynamics
« attributes of each particle may vary over time
= color darker as particle cools off after explosion

= can also depend on other attributes
= position: previous particle position + velocity + time

s death
= age and lifetime for each particle (in frames)
= or if out of bounds, too dark to see, etc

80

Particle System Rendering

= expensive to render thousands of particles

= simplify: avoid hidden surface calculations

= each particle has small graphical primitive
(blob)

= pixel color: sum of all particles mapping to it

= some effects easy
= temporal anti-aliasing (motion blur)
= Normally expensive: supersampling over time
= position, velocity known for each particle
= just render as streak

81

Procedural Approaches Summary

= Perlin noise

= fractals

= L-systems

= particle systems

= not at all a complete list!
= big subject: entire classes on this alone

82

Sampling

83

Samples

most things in the real world are continuous
everything in a computer is discrete

the process of mapping a continuous function to a
discrete one is called sampling

the process of mapping a discrete function to a
continuous one is called reconstruction

the process of mapping a continuous variable to a
discrete one is called quantization

rendering an image requires sampling and
quantization

displaying an image involves reconstruction "

Line Segments

= we tried to sample a line segment so it would
map to a 2D raster display

= We quantized the pixel values to O or 1
= We saw stair steps, or jaggies

85

Line Segments

= Instead, quantize to many shades
= but what sampling algorithm is used?

86

Unweighted Area Sampling

= shade pixels wrt area covered by thickened line

= equal areas cause equal intensity, regardless of
distance from pixel center to area

= rough approximation formulated by dividing each pixel
into a finer grid of pixels

= primitive cannot affect intensity of pixel if it does not
intersect the pixel

A ///Y
i
P
e
\//

87

Weighted Area Sampling

= intuitively, pixel cut through the center should be
more heavily weighted than one cut along corner

= weighting function, W(x,y)

= specifies the contribution of primitive passing through
the point (x, y) from pixel center

Intensity

W(X,y)

88

Images

= an image is a 2D function I(x, y) that
specifies intensity for each point (x, y)

An image seen as a continuous 2D function

89

Image Sampling and Reconstruction

= convert continuous image to discrete set of
samples

= display hardware reconstructs samples into
continuous image

= finite sized source of light for each pixel

o

SN

discrete input values continuous light output

90

Point Sampling an Image

= simplest sampling is on a grid

= sample depends

-
o
]
=
o
=
=
=
=
=
)
a.
3]
=
=
|
=T
=11
R=
=
=
[
v

solely on value
at grid points

Point Sampling

= multiply sample grid by image intensity to
obtain a discrete set of points, or samples.

Image shown with sampling grid

e
e
e
e

I I R I I R

Sampling Geometry

Sampling Errors

= some objects missed entirely, others poorly sampled
= could try unweighted or weighted area sampling
= but how can we be sure we show everything?

s heed to think about entire class of solutions!

93

Image As Signal

= Image as spatial signal
= 2D raster image

= discrete sampling of 2D spatial signal
= 1D slice of raster image

= discrete sampling of 1D spatial signal

Intensity

Origina

Pixel position across scanline
Examples from Foley, van Dam, Feiner, and Hughes

4
0
f
f i
"
L
]

94

Sampling Theory

= how would we generate a signal like this out
of simple building blocks?

s theorem

= any signal can be represented as an (infinite)
sum of sine waves at different frequencies

95

Sampling Theory in a Nutshell

= terminology

= bandwidth — length of repeated sequence on
infinite signal

= frequency — 1/bandwidth (number of repeated
sequences in unit length)

= example — sine wave
= bandwidth = 2n
= frequency = 1/ 2n

sin(t) » T \

Summing Waves |

Summing Waves li

L incde ouA T
VI \onAnny o

B

gon % 1.5z 2z 058 5 15n 2x 0. ..5% = 1.5x 2rn 0 5z n 1.558

1D Sampling and Reconstruction

4 f\/\h

99

1D Sampling and Reconstruction

100

1D Sampling and Reconstruction

]

101

1D Sampling and Reconstruction

102

1D Sampling and Reconstruction

= problems
= jJaggies — abrupt changes

103

1D Sampling and Reconstruction

= problems
= jJaggies — abrupt changes
= lose data

104

Sampling Theorem

continuous signal can be completely recovered
from its samples

Iff

sampling rate greater than twice maximum
frequency present in signal

- Claude Shannon

105

Nyquist Rate

= lower bound on sampling rate

= twice the highest frequency component in the
iImage’s spectrum

106

Falling Below Nyquist Rate

= when sampling below Nyquist Rate, resulting
signal looks like a lower-frequency one

= this is aliasing!

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colum-
bia University.)

107

Nyquist Rate

108

Aliasing

= incorrect appearance of high frequencies as
low frequencies
= t0 avoid: antialiasing
= supersample
= sample at higher frequency
= low pass filtering
= remove high frequency function parts
= aka prefiltering, band-limiting

109

Supersampling

No anptialiasing Sx3 supersampling

SxS unweighted filter

110

Low-Pass Filtering

Original
signal

l Low-pass filtering

Low-pass
filtered
signal

Low-Pass Filtering

HRERE | EREER
m '||||!|| |
U TR T L
, . 1]] EEVEE L FEH R L .
sz UMM
signal LT i HRARREEE LI |I_. L
l Reconstruction
Reconstructed
signal e

Fig. 14.20 The sampling pipeline with filtering. (Courtesy of George Wolberg,

Columbia University.)
1

Filtering

113

= edge finding ,__..._ = 4

= low pass
= blur
= high pass

Previous Antialiasing Example

= texture mipmapping: low pass filter

(a) (b) 114

