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News
extra lab coverage: Mon 12-2, Wed 2-4

P2 demo slot signup sheet

handing back H1 today

we’ll try to get H2 back tomorrow

« we will put them in bin in lab, next to extra handouts
= solutions will be posted

you don’t have to tell us you're using grace days

= only if you're turning it in late and you do *not* want
to use up grace days

= grace days are integer quantities



Homework 1 Common Mistakes

= Q4, Q5: too vague

= don't just say “rotate 90", say around which axis, and in which
direction (CCW vs CW)

= be clear on whether actions are in old coordinate frame or new
coordinate frame

= Q8: confusion on push/pop and complex operations

= wrong: object drawn in wrong spot! ¢lPushMatrix():

glTranslate(..a..);
glRotate(..);
draw things

glPop();

= correct: object drawn in right spot olPushMatrix():

glTranslate(..a..);
. . IRotate(..);
= both: nice modular function | | ilTranslz(lte(..—a..);
that doesn’t change modelview matrix draw things
glPop(); 3



Schedule Change
= HW 3 out Thu 6/2, due Wed 6/8 4pm



Poll

= which do you prefer?
= P4 due Fri, final Sat
= final Thu in-class, P4 due Sat



Midterm Logistics

= Tuesday 12-12:50

= Sit spread out: every other row, at least three
seats between you and next person

= you can have one 8.5x11” handwritten one-
sided sheet of paper

= Keep Iit, can write on other side too for final
= calculators ok



Midterm Topics

= H1, P1, H2, P2

= first three lectures

= topics
= Intro, Math Review, OpenGL
= Transformations I/Il/I1
= Viewing, Projections /Il



Reading: Today

= FCG Chapter 11
= pp 209-214 only: clipping
= FCG Chap 13

= RB Chap Blending, Antialiasing, ...

= only Section Blending



Reading: Next Time
s FCG Chapter 7



Errata

= p214
= f(p) > 0 1s “outside” the plane

m D234
= For quadratic Bezier curves, N=
= W_IMN(t) =
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Review: lllumination

= transport of energy from light sources to
surfaces & points

= Includes direct and indirect illumination

Images by Henrik Wann Jensen
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Review: Light Sources

= directional/parallel lights
= point at infinity: (x,y,z,0)T

« point lights %&
= finite position: (x,y,z,1)7

= Spotlights
= position, direction, angle

= ambient lights
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Review: Light Source Placement

= geometry: positions and directions
= standard: world coordinate system
= effect: lights fixed wrt world geometry
= alternative: camera coordinate system
» effect: lights attached to camera (car headlights)
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Review: Reflectance

= Specular. perfect mirror with no scattering
= gloss: mixed, partial specularity
= diffuse: all directions with equal energy

(VAR Vv

specular + glossy + diffuse =
reflectance distribution
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Review: Reflection Equations

l n
Lyittuse = Kd Liight m* D) . ; ‘

_ nshiny
I o ksIlight (V ° l')

R

7]
4

! o T
/o /53 2(N(N-L)-L=R

15
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Review: Reflection Equations 2

tn

h

= Blinn improvement %

n.,.
_ shiny ]
Ispecular o ksIlight (h ° l'l)

h=(1+v)/2

= full Phong lighting model

= combine ambient, diffuse, specular components

#lights

Itotal — ksIambient T le (kd (l'l ° ll) T ks (V ¢ I.i )nShiny )
i=1

« don't forget to normalize all vectors: n,l,r,v,h 16



Review: Lighting

= lighting models
= ambient
= normals don’t matter
= Lambert/diffuse
= angle between surface normal and light
= Phong/specular
= surface normal, light, and viewpoint
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Review: Shading Models
= flat shading

= compute Phong lighting once for entire
polygon
= Gouraud shading

= compute Phong lighting at the vertices and
interpolate lighting values across polygon

= Phong shading
= compute averaged vertex normals
= Interpolate normals across polygon and

perform Phong lighting across polygon
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Review: Computing Normals

= per-vertex normals by interpolating per-facet
normals

=« OpenGL supports both
= computing normal for a polygon
« three points form two vectors

- b
:
. normal of plane
: C a-b
= which side of plane is up?
= counterclockwise a

point order convention
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Review: Non-Photorealistic Shading

1+n-1

= cool-to-warm shading «, = c=k,c,+(1-k,)c,
= draw silhouettes: if (e-ny)(e-n,) <0, e=edge-eye vector

s draw creases: if (n,-n,) < threshold

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 20



End of Class Last Time

= Use version control for your projects!
=« CVS, RCS

= partially work through problem with lighting
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Compositing

22



Compositing

= how might you combine multiple elements?
= foreground color A, background color B

b

4

Opaque :
AandB 4

;

e

Partially t
transparent b
Aand B 4

L4

Conceptual
sub-pixel
overlay




Premultiplying Colors

specify opacity with alpha channel: (r,g,b,o)
« a=1:0paque, a=.5: translucent, a=0: transparent

A overB
m C = (XA+ (1-OC)B

but what if B is also partially transparent?
« C=0A+ (1-a) BB = BB + cA + B - o B

= Y=B+(APla=p+a—-ap
= 3 multiplies, different equations for alpha vs. RGB

premultiplying by alpha
« C=¢yC,B’ =8B, A’=0A

« C=B" +A’-0B’

« y=P+a—ap
= 1 multiply to find C, same equations for alpha and RGB
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Clipping
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Rendering Pipeline

Geomers || Modetow

Database Transform. Lighting

Scan

Conversion || TeXturing Blending
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Next Topic: Clipping

= we've been assuming that all primitives (lines,
triangles, polygons) lie entirely within the viewport

= In general, this assumption will not hold:

\
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Clipping

= analytically calculating the portions of
primitives within the viewport

—

o

28



Why Clip?

s bad idea to rasterize outside of framebuffer
bounds

= also, don't waste time scan converting pixels
outside window

= could be billions of pixels for very close
objects!
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Line Clipping

= 2D

= determine portion of line inside an axis-aligned
rectangle (screen or window)

s 3D

= determine portion of line inside axis-aligned
parallelpiped (viewing frustum in NDC)

= simple extension to 2D algorithms
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Clipping

= naive approach to clipping lines:

for each line segment

for each edge of viewport

find intersection point

pick "“nearest” point

if anything is left,

= what do we mean by “nearest”
= how can we optimize this?

A

draw it

B
?
' D
C

31



Trivial Accepts

= Dig optimization: trivial accept/rejects

= Q: how can we quickly determine whether a line
segment is entirely inside the viewport?

= A: test both endpoints

=

— /
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Trivial Rejects

= Q: how can we know a line is outside
viewport?

= A: if both endpoints on wrong side of same
edge, can trivially reject line

\ T /




Clipping Lines To Viewport

= combining trivial accepts/rejects

=« trivially accept lines with both endpoints inside all edges
of the viewport

=« trivially lines with both endpoints

= otherwise, reduce to trivial cases by splitting into two
segments

T/

.



Cohen-Sutherland Line Clipping

= outcodes

= 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

1010 1000 1001
« OC(p1)=0010 55— Y Vmar
« OC(p2)=0000 °pl
. OC(p3)=1007 0010 | 0000

0001
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Cohen-Sutherland Line Clipping

= assign outcode to each vertex of line to test
« line segment: (p1,p2)
= trivial cases
= OC(pl1)==0 && OC(p2)==0
= both points inside window, thus line segment completely
visible (trivial accept)
= (OC(pl1) & OC(p2))!=0
« there is (at least) one boundary for which both points are
outside (same flag set in both outcodes)

« thus line segment completely outside window (trivial
reject)
36



Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

pick an edge that the line crosses ( )
intersect line with edge ( )

discard portion on wrong side of edge and assign
outcode to new vertex

apply trivial accept/reject tests; repeat if necessary

37



Cohen-Sutherland Line Clipping

= if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be

discarded
= pick an edge that the line crosses
= check against edges in same order each time
« for example: top, bottom, right, left B

38



Cohen-Sutherland Line Clipping

= intersect line with edge (how?)
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Cohen-Sutherland Line Clipping

= discard portion on wrong side of edge and assign
outcode to new vertex

= apply trivial accept/reject tests and repeat if
necessary

40



Viewport Intersection Code

= (X4, ¥Y1)s (X0, ¥o) Intersect vertical edge at Xright

* Yintersect = Y1 + MXight — X1)

= M=(y5-Y1)/(Xo-X4)
(X2, ¥2)

= (X1, Y1), (X0, ¥o) intersect horiz edge at Ypoitom

= Xintersect = X1 + (Ypottom — ¥1)/M
= M=(Yo-Y1)/(X5-X1) (X2, ¥2)

Ybottom
(X1 ) y1)

41



Cohen-Sutherland Discussion

= uUse opcodes to quickly eliminate/include lines

= best algorithm when trivial accepts/rejects are
common

= must compute viewport clipping of remaining
lines

= Non-trivial clipping cost
= redundant clipping of some lines

more efficient algorithms exist

42



Line Clipping in 3D

approach
= clip against parallelpiped in NDC
= after perspective transform

= means that clipping volume always the same
= XMin=ymin= -1, xmax=ymax= 1 in OpenGL

= boundary lines become boundary planes
= but outcodes still work the same way

= additional front and back clipping plane
= zmin = -1, zmax = 1 in OpenGL

43



Polygon Clipping

= Objective
= 2D: clip polygon against rectangular window

= Or general convex polygons

= extensions for non-convex or general polygons
= 3D: clip polygon against parallelpiped

44



Polygon Clipping

= Not just clipping all boundary lines
= may have to introduce new line segments

—_
I

45



Why Is Clipping Hard?

= wWhat happens to a triangle during clipping?

= possible outcomes

triangle = triangle triangle = quad triangle = 5-gon

= how many sides can a clipped triangle have?

46



m Seven...

How Many Sides?

47



Why Is Clipping Hard?

= a really tough case:

\\
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Why Is Clipping Hard?

= a really tough case:

-]

concave polygon = multiple polygons




Polygon Clipping

= classes of polygons

= triangles

= convex

= concave

= holes and self-intersection

50



Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

IS
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

IS
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Sutherland-Hodgeman Clipping

= basic idea:
= consider each edge of the viewport individually
= clip the polygon against the edge equation
= after doing all edges, the polygon is fully clipped

59



Sutherland-Hodgeman Algorithm

= input/output for algorithm
= input: list of polygon vertices in order

= output: list of clipped poygon vertices
consisting of old vertices (maybe) and new
vertices (maybe)

= basic routine
= go around polygon one vertex at a time

= decide what to do based on 4 possibilities
= IS vertex inside or outside?
= IS previous vertex inside or outside?

60



Clipping Against One Edge

= pli] inside: 2 cases

inside outside
pli-1]

pli]
output: pli]

inside

pli]

outside

o
../‘p/ pli-11

output: p, pli]

61



Clipping Against One Edge

= p[i] outside: 2 cases

inside outside Inside outside
pli-1] * pli]
p
[1] L
P pli-1]

output: p output: nothing 6



Clipping Against One Edge

clipPolygonToEdge( p[n], edge ) {
for(i=0 ;i< n;i++ ) {
if( p[i] inside edge ) {
if( p[i-1] inside edge ) output p[i];  // p[-1]= p[n-1]

else {
p= intersect( p[i-1], p[i], edge ); output p, pli;
}
} else { // p[i] is outside edge

if( p[i-1] inside edge ) {
p= intersect(p[i-1], p[l], edge ); output p;
}



Sutherland-Hodgeman Example

inside

outside

64



Sutherland-Hodgeman Discussion

= similar to Cohen/Sutherland line clipping
= inside/outside tests: outcodes

= Intersection of line segment with edge:
window-edge coordinates

= Clipping against individual edges independent
= great for hardware (pipelining)

= all vertices required in memory at same time
= NOt SO good, but unavoidable

« another reason for using triangles only in
hardware rendering

65



Sutherland/Hodgeman Discussion

= for rendering pipeline:

= re-triangulate resulting polygon
(can be done for every individual clipping
edge)

66



Curves

67



Parametric Curves

= parametric form for a line:

x=x,t+{1-1)x,
y=yt+{1=1)y
2=z, +(1-1)z
= X, Y and z are each given by an equation that
involves:
= parameter
= some user specified control points, x, and x,
= this is an example of a parametric curve

68



Splines

= a Spline is a parametric curve defined by
control points

= term “spline” dates from engineering drawing,
where a spline was a piece of flexible wood
used to draw smooth curves

= control points are adjusted by the user to
control shape of curve

69



Splines - History

= draftsman used ‘ducks’ and
strips of wood (splines) to [
draw curves > €

= wood splines have second-
order continuity, pass
through the control points

Ei : A

ducks trace out curve

70



Hermite Spline

= hermite spline is curve for which user
provides:

= endpoints of curve

= parametric derivatives of curve at endpoints
= parametric derivatives are dx/at, dy/dt, dz/at

= more derivatives would be required for higher
order curves

71



Hermite Cubic Splines

= example of knot and continuity constraints

Vo, sz/
=1
=0 P

P

Hermite Specification

72



Hermite S

pline (2)

= Say user provides x,,x,x,,x,
= cubic spline has degree 3, is of the form:
x=at +bt* +ct+d
« for some constants a, b, ¢ and d derived from the

control points, but how?

= we have constraints:
= Curve must pass throug
= derivative must be x’, w
= Curve must pass throug
= derivative must be x’, w

N X, when t=0
nen t=0
N X, when t=1

nen t=1
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Hermite Spline (3)

= solving for the unknowns gives

a=-2x+2x,+x +x,
b=3x,—3x,—x —2x,
c=x,
d = x,

= rearranging gives

x = x, (=28 +3t%)
+x,(2t° = 3" +1)
+x/(£ = 1)
+x,(£ =2t" +1)

’ 7]
or x=[x x, x x]

_ o O O

o O = O
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Basis Functions

= a point on a Hermite curve is obtained by

multiplying each control point by some function and

summing
s functions are called basis functions

—x1

—x0
—x'1
—xX'0

75






Splines in 2D and 3D

= SO far, defined only 1D splines:
X=f(t.'X0,X1,X’0,X’1)

= for higher dimensions, define control points in
higher dimensions (that is, as vectors)

o -2 3 0 ofF
X X X xl, x(3 s 23 0 1l
VIS Yo v ol g ol
2 la o o)y 5y ol
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Bézier Curves

= similar to Hermite, but more intuitive
definition of endpoint derivatives

= four control points, two of which are knots

&
V
Vp ] P 2/ "support"
t=1 =0 "chord" Hr
P =1

Pf I
Bezier
Hermite Specification Specification °P

Pi
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Bézier Curves

s derivative values of Bezier curve at knots
dependent on adjacent points

Vp, =3(p,— p)
Vp,=3(p,— p;)
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Bézier vs. Hermite

s can write Bezier in terms of Hermite
= note: just matrix form of previous

X W
® T
dy  dy
it it
ax,  dy,
L it it .
G T

1

0
0
3

0 0
0 1
0 0
-3 3

M
Y

V3

Va_

“
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2 -2 1 1

-3 3 -2 -1
0 0 1 0

(1 0 0 o]

Bézier vs. Hermite

= Now substitute this in for previous Hermite
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Bezier Basis, Geometry Matrices

-1 3 =3 1x
3 -6 3 —
N L,
- 1 0 0 - 4 y4_..r
M gezier G Buzier

= but why is Mg,,,., @ good basis matrix?



Bézier Blending Functions

= look at blending functions

= family of polynomials called
order-3 Bernstein polynomials

« C(3, k)t (1-1)3%; 0<=k <=3 P{) =
« all positive in interval [0,1]
= sSum is equal to 1

ECE
3t(1-1¢)°

3t (1-1)

3

_pl_

[

| P4

P

3

83



Bézier Blending Functions

every point on curve is
linear combination of
control points

weights of combination
are all positive

sum of weights is 1

therefore, curve is a
convex combination of
the control points

Bezier Blending

Functions

0.1

02 03 04

05 06

0.7 08

0.9
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Bézier Curves

= curve will always remain within convex hull
(bounding region) defined by control points

(Q) ()

(P ()
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Bezier Curves
= interpolate between first, last control points

= 1St point’s tangent along line joining 1st, 2nd pts

= 41 point’s tangent along line joining 319, 4th pts

(q)

(9) (P ()
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Comparing Hermite and Bézier
Hermite Bézier

0.8 -
—— BO
—x0 0.6 - B
R — B2

—X'0 04 - —B3

0.4
1 1 N 1
Vi ’ \ I
/ \ L4 \ AN
/ \ " \ [
’ Y / \ / A 3
/ \ P \ / \
e 3] % \ 4 \
/ P \ 1
/ N \
P N \ .
p A\ | o /
Y 0 \ \ /
w3
Ve o
o N
Pz Ps 2
(a) (b) (c)
Py Pa
* [ ]
P, N N
! y N
\ p \ / ~
S P \ / N
LN \ P X
AR \
AN d

3
2
(d) (e} 87




Comparing Hermite and Bezier

demo: www.sigqgraph.org/education/materials/HyperGraph/modeling/splines/demoproqg/curve.html

1.2
1
0.8 -
— —B0
—0 0.6 - — B1
—x'1 _82
—x0| 04 —B3
0.2 1
0
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Rendering Bezier Curves: Simple

= evaluate curve at fixed set of parameter
values, join points with straight lines

= advantage: very simple
= disadvantages:

= expensive to evaluate the curve at many
points

= No easy way of knowing how fine to sample
points, and maybe sampling rate must be
different along curve

= NO easy way to adapt: hard to measure
deviation of line segment from exact curve

89



Rendering Beziers: Subdivision

= a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

= suggests a rendering algorithm:
= Keep breaking curve into sub-curves

= stop when control points of each sub-curve
are nearly collinear

= draw the control polygon: polygon formed by
control points

90



Sub-Dividing Bezier Curves

= step 1: find the midpoints of the lines joining
the original control vertices. call them M,,,
M12= M23
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Sub-Dividing Bezier Curves

= step 2: find the midpoints of the lines joining
M,,, M., and M,,, M,,. call them M,,,, M, .,

92



Sub-Dividing Bezier Curves

= step 3: find the midpoint of the line joining
M,.o, M., call it M, .4

93



Sub-Dividing Bezier Curves

= curve Py, My,, My, M,,,5 exactly follows original
from t=0 to t=0.5

= curve My, .5, M55, M,;, P;exactly follows
original from t=0.5 to t=1

94



Sub-Dividing Bezier Curves

= continue process to create smooth curve

P,

P, P,

95



de Casteljau’s Algorithm

= can find the point on a Bezier curve for any
parameter value twith similar algorithm

= for t=0.25, instead of taking midpoints take points
0.25 of the way

demo: www.saltire.com/applets/advanced geometry/spline/spline.htm 9%




Longer Curves

= a single cubic Bezier or Hermite curve can only capture a
small class of curves

= at most 2 inflection points
= one solution is to raise the degree

= allows more control, at the expense of more control points and
higher degree polynomials

= control is not local, one control point influences entire curve

= Dbetter solution is to join pieces of cubic curve together into
piecewise cubic curves

= total curve can be broken into pieces, each of which is cubic

= local control: each control point only influences a limited part of
the curve

= Interaction and design is much easier

97



Piecewise Bezier: Continuity Problems

demo:

98



Continuity

= when two curves joined, typically want some
degree of continuity across knot boundary

= CO, “C-zero”, point-wise continuous, curves
share same point where they join

=« C1, “C-one”, continuous derivatives
» G2, “C-two”, continuous second derivatives

C, continuity Co & C; continuity Cp & C; & C, continuity

T
~_/

Y



Geometric Continuity

= derivative continuity is important for animation

= if object moves along curve with constant parametric
speed, should be no sudden jump at knots

= for other applications, tangent continuity suffices
» requires that the tangents point in the same direction
« referred to as G’ geometric continuity
= curves could be made C’ with a re-parameterization

= geometric version of C?is G?, based on curves
having the same radius of curvature across the knot

100



Achieving Continuity

s Hermite curves

= user specifies derivatives, so C’ by sharing points and
derivatives across knot

= Bezier curves
= they interpolate endpoints, so C° by sharing control pts
= introduce additional constraints to get C’

= parametric derivative is a constant multiple of vector joining
first/last 2 control points

= 50 C' achieved by setting P, ;=P ,=J, and making P,,and J and
P, , collinear, with J-P, ,=P; ,-J
= C?comes from further constraints on P, and P, ,

= leads to...
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B-Spline Curve

= start with a sequence of control points

= select four from middle of sequence
(Pi-2s Pi-1s Pis Pis1)
= Bezier and Hermite goes between p,, and p;, ,

= B-Spline doesn’t interpolate (touch) any of them but
approximates the going through p. , and p,

P; o CPZ o Fo
N\
° P; o o
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B-Spline

= by far the most popular spline used
= C,, Gy, and G, continuous

L
s

=
L
&
I
oy

demo: www.sigqgraph.org/education/materials/HyperGraph/modeling/splines/demoproqg/curve.html
103




B-Spline

= locality of points

e
1
|
1

{a)

Figure 10-41
Local modification of a B-spline curve. Changing one of the control points in (a) produ
curve (b), which is modified only in the neighborhood of the altered control point.




Project 3

= bumpy plane

= vertex height varies randomly by 20% of face
width

= world coordinate light, camera coord light
= regenerate terrain
= toggle colors
= SiX triangles around a vertex
= [demo]




Project 3: Normals

= calculate once (per terrain)

= per-face normals

= then interpolate for per-vertex
= Use when drawing

= specify interleaved with vertices
= explicitly drawing normals

= bristles at vertices

= visual debugging
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Project 3: Data Structures

= suggestion: 100x100x4 array for vertex
coords

= colors?
= hormals? per-face, per-vertex

107



Project 4

= create your own graphics game or tutorial
= required functionality

= 3D, interactive, lighting/shading

= texturing, picking, HUD
= advanced functionality pieces

= two for 1-person team

= four for 2-person team

= Six for 3-person eam
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P4: Advanced Functionality

= (new) navigation

= procedural modelling/textures
= particle systems

= collision detection

= simulated dynamics

= level of detalil control

= advanced rendering effects

= Whatever else you want to do
= proposal is a check with me
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P4 Proposal

= due Wed 1 Jun 4pm

= either electronic handin, or box handin for
hardcopy

= short (< 1 page) description
« how game works
= how it will fulfill required functionality
= advanced functionality

= must include at least one annotated
screenshot mockup sketch

= hand-drawn scanned or using computer tools
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P4 Writeup

= what: a high level description of what you've
created, including an explicit list of the advanced
functionality items

= how: mid-level description of the algorithms and
data structures that you've used

= howto: detailed instructions of the low-level
mechanics of how to actually play (keyboard
controls, etc)

= sources: sources of inspiration and ideas
(especially any source code you looked at for
inspiration on the Internet)

= include screen shots with handin for HOF eligibility
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P4 Grading

= final project due 11:59pm Fri Jun 17
= face to face demos again
= | will be grading
= grading
= 50% base: required functions, gameplay, etc
= 50% advanced functionality
= buckets, tentative mapping
= zero=0
= Minus =40
= check-minus = 60
= check =80
= check-plus =100
= plus 105
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