
University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Lighting/Shading I, II, III

Week 3, Tue May 24

�

News

� P1 demos if you missed them
� 3:30-4:30 today

�

Homework 2 Clarification

� off-by-one problem in Q4-6
� Q4 should refer to result of Q1
� Q5 should refer to result of Q2
� Q6 should refer to result of Q3

� acronym confusion
� Q1 uses W2C, whereas notes say W2V

� world to camera/view/eye

� Q2 uses C2P, whereas notes say V2C, C2N
� Q3 uses N2V, whereas notes say N2D

� normalized device to viewport/device

�

Clarification: N2D General Formulation

(-1,-1)

(1,1)(1,1)

(0,0)(0,0)

(w,h)(w,h)

NDCSNDCS DCSDCS

glViewport(c,d,a,b);

aa

bb

cc

dd

� xD = (a*xN)/2 + (a/2)+c
� yD = - ((b*yN)/2 + (b/2)+d)
� zD = zN/2 + 1

� translate, scale, reflect

�

Reading: Today

� FCG Chap 8, Surface Shading, p 141-150
� RB Chap Lighting

�

Reading: Next Time

� FCG Chap 11.1-11.4
� FCG Chap 13
� RB Chap Blending, Antialiasing, Fog,

Polygon Offsets
� only Section Blending

�

Review: Projection Taxonomy
planarplanar

projectionsprojections

perspective:perspective:
1,2,31,2,3--pointpoint parallelparallel

obliqueoblique orthographicorthographic

cabinetcabinet cavaliercavalier

top,top,
front,front,
sideside

axonometric:axonometric:
isometricisometric
dimetricdimetric
trimetrictrimetric

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

�

Review: Midpoint Algorithm
� moving horizontally along x direction

� draw at current y value, or move up vertically to y+1?
� check if midpoint between two possible pixel centers

above or below line
� candidates

� top pixel: (x+1,y+1)
� bottom pixel: (x+1, y)

� midpoint: (x+1, y+.5)
� check if midpoint above or below line

� below: top pixel
� above: bottom pixel

� key idea behind Bresenham
� [demo]

�

P

Review: Flood Fill

� simple algorithm
� draw edges of polygon
� use flood-fill to draw interior

	

Review: Scanline Algorithms

� scanline: a line of pixels in an image
� set pixels inside polygon boundary along

horizontal lines one pixel apart vertically

1

2

3

4

5=0

P

		

Review: General Polygon Rasterization

� idea: use a parity test

for each scanline
edgeCnt = 0;
for each pixel on scanline (l to r)

if (oldpixel->newpixel crosses edge)
edgeCnt ++;

// draw the pixel if edgeCnt odd
if (edgeCnt % 2)

setPixel(pixel);

Review: Making It Fast: Bounding Box

� smaller set of candidate pixels
� loop over xmin, xmax and ymin,ymax

instead of all x, all y

	�

Review: Bilinear Interpolation

� interpolate quantity along L and R edges,
as a function of y

� then interpolate quantity as a function of x

yy

P(x,y)P(x,y)

PP11

PP22

PP33

PPLL PPRR

	�

Review: Barycentric Coordinates

� weighted combination of vertices
� smooth mixing
� speedup

� compute once per triangle

1P

3P

2P

P

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
(1,0,0)(1,0,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
(0,1,0)(0,1,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
(0,0,1)(0,0,1) 5.0=β

1=β

0=β

321 PPPP ⋅+⋅+⋅= γβα

1,,0
1

≤≤
=++

γβα
γβα

““convex combinationconvex combination
of points”of points”

for points inside triangle

	�

Review: Deriving Barycentric Coordinates

� non-orthogonal
coordinate system
� P3 is origin, P2-P3, P1-

P3 are basis vectors

� from bilinear
interpolation of point P
on scanline

1P

3P

2P

P

(1,0,0)(1,0,0)

(0,1,0)(0,1,0)

(0,0,1)(0,0,1)

PP22

PP33

PP11

PPLL PPRRPPdd
22

: d
: d

11

	�

Correction/Review: Deriving Barycentric
Coordinates

� 2D triangle area

3PA

1P

3P

2P

P

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
(1,0,0)(1,0,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
(0,1,0)(0,1,0)

((α,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γα,β,γ) =) =
(0,0,1)(0,0,1)

AA

AA

AA

P

P

P

/

/

/

1

2

3

=

=

=

γ
β
α

2PA

1PA
123 PPP AAAA +++=

AP3

AP1

	�

Review: Simple Model of Color

� simple model based on RGB triples
� component-wise multiplication of colors

� (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

� why does this work?

	�

Review: Trichromacy and Metamers

� three types of cones
� color is combination

of cone stimuli
� metamer: identically

perceived color
caused by very
different spectra

	�

Review: Color Constancy

�

Clarification/Review: Stroop Effect

� blue
� green
� purple
� red
� orange

� say what color the text is as fast as possible
� interplay between cognition and perception

�	

Review: Measured vs. CIE Color Spaces

� measured basis
� monochromatic lights
� physical observations
� negative lobes

� transformed basis
� “imaginary” lights
� all positive, unit area
� Y is luminance

��

Review: Device Color Gamuts

� compare gamuts on CIE chromaticity diagram
� gamut mapping

��

Review: RGB Color Space

� define colors with (r, g, b)
amounts of red, green, and
blue
� used by OpenGL

� RGB color cube sits within
CIE color space
� subset of perceivable colors

��

Review: Additive vs. Subtractive Colors

� additive: light
� monitors, LCDs
� RGB model

� subtractive: pigment
� printers
� CMY model

�
�
�

�

�

�
�
�

�

�

−
�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

B

G

R

Y

M

C

1
1
1

��

Review: HSV Color Space

� hue: dominant wavelength, “color”
� saturation: how far from grey
� value/brightness: how far from

black/white
� cannot convert to RGB with matrix

alone

��

Review: YIQ Color Space

� color model used for color TV
� Y is luminance (same as CIE)
� I & Q are color (not same I as HSI!)
� using Y backwards compatible for B/W TVs
� conversion from RGB is linear

� green is much lighter than red, and red lighter
than blue

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−
−−=

�
�
�

�

�

�
�
�

�

�

B

G

R

Q

I

Y

31.052.021.0
32.028.060.0

11.059.030.0

Q

I

��

Review: Monitors

� monitors have nonlinear response to input
� characterize by gamma

� displayedIntensity = aγγγγ (maxIntensity)

� gamma correction
� displayedIntensity = (maxIntensity)

= a (maxIntensity)

γγ
�
�
	

�
� /1a

��

Lighting I

��

Goal

model interaction of light with matter in a way that
appears realistic and is fast
� phenomenological reflection models
� ignore real physics, approximate the look
� simple, non-physical
� Phong, Blinn-Phong

� physically based reflection models
� simulate physics
� BRDFs: Bidirectional Reflection Distribution

Functions

�

Photorealistic Illumination

[[electricimage.comelectricimage.com]]

�	

Photorealistic Illumination

[[electricimage.comelectricimage.com]]

��

Fast Local Illumination

��

Illumination

� transport of energy from light sources to
surfaces & points
� includes direct and indirect illumination

Images by Henrik Wann Jensen

��

Components of Illumination
� two components: light sources and surface properties
� light sources (or emitters)
� spectrum of emittance (i.e., color of the light)
� geometric attributes

� position
� direction
� shape

� directional attenuation
� polarization

��

Components of Illumination

� surface properties
� reflectance spectrum (i.e., color of the surface)
� subsurface reflectance
� geometric attributes

� position
� orientation
� micro-structure

��

heat/light source

thermometer/eye

reflective objects

energy
packets

Illumination as Radiative Transfer

� radiative heat transfer approximation
� substitute light for heat
� light as packets of energy (photons)

� particles not waves
� model light transport as packet flow

��

light waves

single slit

new wavefrontlight particles
single slit

bent ray?!

Light Transport Assumptions
� geometrical optics (light is photons not waves)

� no diffraction

� no polarization (some sunglasses)
� light of all orientations gets through

� no interference (packets don’t interact)
� which visual effects does this preclude?

��

Light Transport Assumptions II

� color approximated by discrete wavelengths
� quantized approx of dispersion (rainbows)
� quantized approx of fluorescence (cycling

vests)
� no propagation media (surfaces in vacuum)

� no atmospheric scattering (fog, clouds)
� some tricks to simulate explicitly

� no refraction (mirages)
� light travels in straight line

� no gravity lenses
superposition (lights can be added)

��

Light Sources and Materials

� appearance depends on
� light sources, locations, properties
� material (surface) properties
� viewer position

� local illumination
� compute at material, from light to viewer

� global illumination (later in course)
� ray tracing: from viewer into scene
� radiosity: between surface patches

�

Illumination in the Pipeline

� local illumination
� only models light arriving directly from light

source
� no interreflections and shadows

� can be added through tricks, multiple
rendering passes

� light sources
� simple shapes

� materials
� simple, non-physical reflection models

�	

Light Sources

� types of light sources
� glLightfv(GL_LIGHT0,GL_POSITION,light[])

� directional/parallel lights
� real-life example: sun
� infinitely far source: homogeneous coord w=0

� point lights
� same intensity in all directions

� spot lights
� limited set of directions:

� point+direction+cutoff angle

�
�
�
�

�

�

�
�
�
�

�

�

0
z

y

x

�
�
�
�

�

�

�
�
�
�

�

�

1
z

y

x

��

Light Sources

� area lights
� light sources with a finite area
� more realistic model of many light sources
� not available with projective rendering pipeline,

(i.e., not available with OpenGL)

��

Light Sources

� ambient lights
� no identifiable source or direction
� hack for replacing true global illumination

� (light bouncing off from other objects)

��

Ambient Light Sources

� scene lit only with an ambient light source

Light Position
Not Important

Viewer Position
Not Important

Surface Angle
Not Important

��

Directional Light Sources

� scene lit with directional and ambient light

Light Position
Not Important

Viewer Position
Not Important

Surface Angle
Important

��

Point Light Sources

� scene lit with ambient and point light source

Light Position
Important

Viewer Position
Important

Surface Angle
Important

��

Light Sources

� geometry: positions and directions
� standard: world coordinate system

� effect: lights fixed wrt world geometry
� demo:

http://www.xmission.com/~nate/tutors.html
� alternative: camera coordinate system

� effect: lights attached to camera (car headlights)
� points and directions undergo normal

model/view transformation
� illumination calculations: camera coords

��

Types of Reflection
� specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering.

� diffuse reflection sends light in all directions with
equal energy.

� mixed reflection is a weighted
combination of specular and diffuse.

��

Types of Reflection

� retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident
directions.

� gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of
rough surfaces.

�

Reflectance Distribution Model

� most surfaces exhibit complex reflectances
� vary with incident and reflected directions.
� model with combination

+ + =

specular + glossy + diffuse =
reflectance distribution

�	

Surface Roughness

� at a microscopic scale, all
real surfaces are rough

� cast shadows on
themselves

� “mask” reflected light:
shadow shadow

Masked Light

��

Surface Roughness

� notice another effect of roughness:
� each “microfacet” is treated as a perfect mirror.
� incident light reflected in different directions by

different facets.
� end result is mixed reflectance.

� smoother surfaces are more specular or glossy.
� random distribution of facet normals results in diffuse

reflectance.

��

Physics of Diffuse Reflection

� ideal diffuse reflection
� very rough surface at the microscopic level

� real-world example: chalk
� microscopic variations mean incoming ray of

light equally likely to be reflected in any
direction over the hemisphere

� what does the reflected intensity depend on?

��

Lambert’s Cosine Law

� ideal diffuse surface reflection
the energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the cosine
of the angle between that direction and the surface normal

� reflected intensity
� independent of viewing direction
� depends on surface orientation wrt light
� often called Lambertian surfaces

��

Lambert’s Law

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

��

Computing Diffuse Reflection
� depends on angle of incidence: angle between surface
normal and incoming light
� Idiffuse = kd Ilight cos θ

� in practice use vector arithmetic
� Idiffuse = kd Ilight (n • l)

� always normalize vectors used in lighting
� n, l should be unit vectors

� scalar (B/W intensity) or 3-tuple or 4-tuple (color)
� kd: diffuse coefficient, surface color
� Ilight: incoming light intensity
� Idiffuse: outgoing light intensity (for diffuse reflection)

nl

θ

��

Diffuse Lighting Examples

� Lambertian sphere from several lighting
angles:

� need only consider angles from 0°to 90°
� why?
� demo: Brown exploratory on reflection
� http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/ex

ploratories/applets/reflection2D/reflection_2d_java_browser.html

��

Lighting II

��

diffuse diffuse

plus

specular

Specular Reflection

� shiny surfaces exhibit specular reflection
� polished metal
� glossy car finish

� specular highlight
� bright spot from light shining on a specular surface

� view dependent
� highlight position is function of the viewer’s position

�

Physics of Specular Reflection

� at the microscopic level a specular reflecting
surface is very smooth

� thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

� the smoother the surface, the closer it
becomes to a perfect mirror

�	

Optics of Reflection

� reflection follows Snell’s Law:
� incoming ray and reflected ray lie in a plane

with the surface normal
� angle the reflected ray forms with surface

normal equals angle formed by incoming ray
and surface normal

θ(l)ight = θ(r)eflection

��

Non-Ideal Specular Reflectance

� Snell’s law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

� how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

� one option: model the microgeometry of the
surface and explicitly bounce rays off of it

� or…

��

Empirical Approximation

� we expect most reflected light to travel in
direction predicted by Snell’s Law

� but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

� as angle from ideal reflected ray increases,
we expect less light to be reflected

��

Empirical Approximation
� angular falloff

� how might we model this falloff?

��

Phong Lighting

� most common lighting model in computer graphics
� (Phong Bui-Tuong, 1975)

� nshiny : purely empirical
constant, varies rate of falloff
� ks: specular coefficient,
highlight color
� no physical basis, works
ok in practice

v

Ispecular = ksIlight (cosφ)
nshiny

��

Phong Lighting: The nshiny Term

� Phong reflectance term drops off with divergence of viewing
angle from ideal reflected ray

� what does this term control, visually?

Viewing angle – reflected angle

��

Phong Examples

varying l

varying nshiny

��

Calculating Phong Lighting

� compute cosine term of Phong lighting with vectors

� v: unit vector towards viewer/eye
� r: ideal reflectance direction (unit vector)
� ks: specular component

� highlight color
� Ilight: incoming light intensity

� how to efficiently calculate r ?

v

Ispecular = ksIlight (v• r)
nshiny

��

Calculating R Vector

P = N cos θ = projection of L onto N

L
P

N

θ

�

Calculating R Vector

P = N cos θ = projection of L onto N
P = N (N · L)

L
P

N

θ

�	

Calculating R Vector

P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

L
P

N

θ

��

Calculating R Vector

P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

2 P = R + L
2 P – L = R
2 (N (N · L)) - L = R L

P

P

R

L

N

θ

��

Phong Lighting Model

� combine ambient, diffuse, specular components

� commonly called Phong lighting
� once per light
� once per color component

Itotal = ksIambient + Ii (
i=1

lights

 kd (n• li) + ks(v •ri)
nshiny)

��

Phong Lighting: Intensity Plots

��

Blinn-Phong Model

� variation with better physical interpretation
� Jim Blinn, 1977

� h: halfway vector
� h must also be explicitly normalized: h / |h|
� highlight occurs when h near n

ll

nn
vvhh

Iout (x) = ks (h•n)
nshiny • Iin (x);with h = (l + v) /2

��

Light Source Falloff

� quadratic falloff
� brightness of objects depends on power per

unit area that hits the object
� the power per unit area for a point or spot light

decreases quadratically with distance

Area Area 44ππrr22

Area Area 44ππ(2(2r)r)22

��

Light Source Falloff

� non-quadratic falloff
� many systems allow for other falloffs
� allows for faking effect of area light sources
� OpenGL / graphics hardware

� Io: intensity of light source
� x: object point
� r: distance of light from x

02

1
)(I

cbrar
Iin ⋅

++
=x

��

Lighting Review

� lighting models
� ambient

� normals don’t matter
� Lambert/diffuse

� angle between surface normal and light
� Phong/specular

� surface normal, light, and viewpoint

��

Lighting in OpenGL
� light source: amount of RGB light emitted

� value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

� every light source emits ambient, diffuse, and specular
light

� materials: amount of RGB light reflected
� value represents percentage reflected

e.g., (0.0,1.0,0.5)
� interaction: multiply components

� red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

�

Lighting in OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba);
glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba);
glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);

glMaterialfv(GL_FRONT, GL_SHININESS, n);

� warning: glMaterial is expensive and tricky
� use cheap and simple glColor when possible
� see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

�	

Shading

��

Lighting vs. Shading

� lighting
� process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

� shading
� the process of assigning colors to pixels

� (why the distinction?)

��

Applying Illumination

� we now have an illumination model for a point
on a surface

� if surface defined as mesh of polygonal facets,
which points should we use?
� fairly expensive calculation
� several possible answers, each with different

implications for visual quality of result

��

Applying Illumination

� polygonal/triangular models
� each facet has a constant surface normal
� if light is directional, diffuse reflectance is

constant across the facet.
� why?

��

Flat Shading

� simplest approach calculates illumination at a
single point for each polygon

� obviously inaccurate for smooth surfaces

��

Flat Shading Approximations

� if an object really is faceted,
is this accurate?

� no!
� for point sources, the

direction to light varies
across the facet

� for specular reflectance,
direction to eye varies
across the facet

��

Improving Flat Shading
� what if evaluate Phong lighting model at each pixel

of the polygon?
� better, but result still clearly faceted

� for smoother-looking surfaces
we introduce vertex normals at each
vertex
� usually different from facet normal
� used only for shading
� think of as a better approximation of the real surface

that the polygons approximate

��

Vertex Normals

� vertex normals may be
� provided with the model
� computed from first principles
� approximated by

averaging the normals
of the facets that
share the vertex

��

Gouraud Shading

� most common approach, and what OpenGL does
� perform Phong lighting at the vertices
� linearly interpolate the resulting colors over faces

� along edges
� along scanlines C1

C2

C3

edge: mix of c1, c2

edge: mix of c1, c3
interior: mix of c1, c2, c3

does this eliminate the facets?

�

Gouraud Shading Artifacts

� often appears dull, chalky
� lacks accurate specular component

� if included, will be averaged over entire
polygon

C1

C2

C3

this interior shading missed!

C1

C2

C3

this vertex shading spread
over too much area

�	

Gouraud Shading Artifacts

� Mach bands
� eye enhances discontinuity in first derivative
� very disturbing, especially for highlights

��

Gouraud Shading Artifacts

C1

C2

C3

C4

Discontinuity in rate
of color change

occurs here

� Mach bands

��

Gouraud Shading Artifacts

� perspective transformations
� affine combinations only invariant under affine,

not under perspective transformations
� thus, perspective projection alters the linear

interpolation!

Z – into the scene

Image
plane

��

Gouraud Shading Artifacts

� perspective transformation problem
� colors slightly “swim” on the surface as objects

move relative to the camera
� usually ignored since often only small difference

� usually smaller than changes from lighting
variations

� to do it right
� either shading in object space
� or correction for perspective foreshortening
� expensive – thus hardly ever done for colors

��

Phong Shading

� linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel
� same input as Gouraud shading
� pro: much smoother results
� con: considerably more expensive

� not the same as Phong lighting
� common confusion
� Phong lighting: empirical model to calculate

illumination at a point on a surface

��

Phong Shading

� linearly interpolate the vertex normals
� compute lighting equations at each pixel
� can use specular component

N1

N2

N3

N4

Itotal = kaIambient + Ii kd n ⋅ li()+ ks v ⋅ ri()nshiny()
i=1

lights

remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

��

Phong Shading Difficulties

� computationally expensive
� per-pixel vector normalization and lighting

computation!
� floating point operations required

� lighting after perspective projection
� messes up the angles between vectors
� have to keep eye-space vectors around

� no direct support in hardware
� but can be simulated with texture mapping

��

Gouraud Phong

Shading Artifacts: Silhouettes

� polygonal silhouettes remain

��

A

D

C

B

Interpolate between
AB and AD

�

B

A

D

C

Interpolate between
CD and AD

Rotate -90o

and color
same point

Shading Artifacts: Orientation
� interpolation dependent on polygon orientation

� view dependence!

	

B

A

C

vertex B shared by two rectangles
on the right, but not by the one on
the left

E

D

F

H

G
first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

Shading Artifacts: Shared Vertices

	
	

Shading Models Summary

� flat shading
� compute Phong lighting once for entire

polygon
� Gouraud shading

� compute Phong lighting at the vertices and
interpolate lighting values across polygon

� Phong shading
� compute averaged vertex normals
� interpolate normals across polygon and

perform Phong lighting across polygon

	
�

Shutterbug: Flat Shading

	
�

Shutterbug: Gouraud Shading

	
�

Shutterbug: Phong Shading

	
�

Non-Photorealistic Shading

� cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

kw = 1+ n ⋅ l
2

,c = kwcw + (1− kw)cc

	
�

Non-Photorealistic Shading

� draw silhouettes: if , e=edge-eye vector
� draw creases: if

(e ⋅ n0)(e ⋅ n1) ≤ 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

(n0 ⋅ n1) ≤ threshold

	
�

Computing Normals
� per-vertex normals by interpolating per-facet

normals
� OpenGL supports both

� computing normal for a polygon

c

b

a

	
�

Computing Normals
� per-vertex normals by interpolating per-facet

normals
� OpenGL supports both

� computing normal for a polygon
� three points form two vectors

c

b

a

b-c
a-b

	
�

Computing Normals
� per-vertex normals by interpolating per-facet

normals
� OpenGL supports both

� computing normal for a polygon
� three points form two vectors
� cross: normal of plane

c

b

a

b-c
a-b

(a-b) x (b-c)

		

Computing Normals
� per-vertex normals by interpolating per-facet

normals
� OpenGL supports both

� computing normal for a polygon
� three points form two vectors
� cross: normal of plane

� which side of plane is up?
� counterclockwise

point order convention

c

b

a

b-c
a-b

(a-b) x (b-c)

			

Specifying Normals

� OpenGL state machine
� uses last normal specified
� if no normals specified, assumes all identical

� per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

� per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

