University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Lighting/Shading |, Il, lli

Week 3, Tue May 24

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= P1 demos if you missed them
= 3:30-4:30 today

Homework 2 Clarification

= Off-by-one problem in Q4-6
= Q4 should refer to result of Q1
= Q5 should refer to result of Q2
= Q6 should refer to result of Q3
= acronym confusion
=« Q1 uses W2C, whereas notes say W2V
= world to camera/view/eye
=« Q2 uses C2P, whereas notes say V2C, C2N

= Q3 uses N2V, whereas notes say N2D
= normalized device to viewport/device

Clarification: N2D General Formulation

» translate, scale, reflect
glViewport (c,d, a,b);

DCS b

NDCS

(-1,-1) I d”

= Xp = (a™%XN)/2 + (a/2)+C
= Yp =- ((b*yN)/2 + (b/2)+d)
N ZD = ZN/2 + 1

Reading: Today

s FCG Chap 8, Surface Shading, p 141-150
= RB Chap Lighting

Reading: Next Time

s FCG Chap 11.1-11.4
= FCG Chap 13

= RB Chap Blending, Antialiasing, Fog,
Polygon Offsets

= only Section Blending

Review: Projection Taxonomy

planar
projections

/

perspective:

1,2,3-point parallel

/N

oblique orthographic

PN / \
cabinet cavalier

top,
front,
side

axonometric:
isometric

dimetric
trimetric

\Prﬁjecﬁﬁrz
oblique

S

Projectors |

Projectors
converge

[]

Projection PI.

Pr ‘J ection

Pl. Pr j ectio Il’u“ PI.

g

A.OBLIQUE

B.AXONOMETRIC C.PERSPECTIVE

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

Review: Midpoint Algorithm

moving horizontally along x direction

« draw at current y value, or move up vertically to y+1?

« check if midpoint between two possible pixel centers
above or below line

candidates

= top pixel: (x+1,y+1)

= bottom pixel: (x+1, y)

midpoint: (x+1, y+.5)

check if midpoint above or below line
= below: top pixel

= above: bottom pixel

key idea behind Bresenham

=« [demo] 8

Review: Flood Fill

= simple algorithm
= draw edges of polygon
= use flood-fill to draw interior

N

[=|O|O| O|==

Review: Scanline Algorithms

= scanline: a line of pixels in an image

= set pixels inside polygon boundary along
horizontal lines one pixel apart vertically

10

Review: General Polygon Rasterization

12 |-

D
10 |-
- Scan
e d line
. . &
= idea: use a parity test Bl =
E_
for each scanline TS U i e e 2
edgeCnt = 0; 2 4 6 B8 10 12 14

for each pixel on scanline (1 to r)

if (oldpixel->newpixel crosses edge)
edgeCnt ++;

// draw the pixel if edgeCnt odd
if (edgeCnt % 2)
setPixel (pixel) ;

11

Review: Making It Fast: Bounding Box

= smaller set of candidate pixels

= loop over xmin, xmax and ymin,ymax
instead of all x, all y

L L

e

e
[T]

L
]

)
It it it Bt i i it i

'-',._" -
Ny
e i e g

— A e ees
L L L L L L L L L L L L L L L L LNt Y
e e e e e e e i

Review: Bilinear Interpolation

= interpolate quantity along L and R edges,
as a function of y

= then interpolate quantity as a function of x

13

Review: Barycentric Coordinates

(o,B.y) =
= weighted combination of vertices A 1 (1:0.0)
= smooth mixing (0LB.y) = f=0
0,0,1 _
= speedup 0.1 B=0.5
= compute once per triangle
p=1
P=a-P+ [P, + y-P, Pz(oc,B,v)=
S a+fty=1 (0,1,0)

0<a, [,y <1 for points inside triangle
—

“convex combination
of points”™

14

Review: Deriving Barycentric Coordinates

B 1,00
= non-orthogonal 1
coordinate system 00
= P, isorigin, Py-Pg, Py-
P, are basis vectors g
P, (0.1,0)

= from bilinear
interpolation of point P
on scanline

15

/Review: Deriving Barycentric
Coordinates

= 2D triangle area (B =

16

Review: Simple Model of Color

= simple model based on RGB triples

= component-wise multiplication of colors

= (a0,a1,a2) * (b0,b1,b2) = (a0"b0, a1*b1, a2*b2)
Light x object = color

= why does this work?

17

Review: Trichromacy and Metamers

i

= three types of cones &_ oz- W L
= color is combination £% . AR
of cone stimuli = s .~ \\.
. . 0 "'r'-‘r:::* — T T
m metamer. identically P VA, U A
perceived color wavelength (nm)

i

S
- I M
I L

rgm

caused by very

dlfferent SpeCtra I PurecS;I:ectural I MixMec:-spectra
— L
po— —

18

Review: Color Constancy

'a
Do they match?] :

Image courtesy of John MCann

19

Clarification/Review: Stroop Effect

green
purple
red

say what color the text is as fast as possible
interplay between cognition and perception

20

Review: Measured vs. CIE Color Spaces

i | T ilew T]
L 144 -'I-——-II—_ ------------------------------ ;— ------
oy = . !
z > B
g g i YA
E = Ve O
.| S R T T Y N R
: - R AYA -
E = 0.4 i |I E '.':I; g Ill
o, [,1 ; . "." |
nar-- '-“-"J.—'--""""-—_'_.‘:-ll-.:': """""""" ;\ """ "
_:- _-_.___.-3",__ “";_L N |
Wavelength (nm) Wavelength (nm)
= measured basis = transformed basis

= Mmonochromatic lights
= physical observations
= negative lobes

= “imaginary” lights
= all positive, unit area
= Y is luminance

21

Review: Device Color Gamuts

= compare gamuts on CIE chromaticity diagram
= gamut mapping

,,,_I-.II.I. CIELAB
0
u,_IVII ‘IIII e o
= N A S
R SOy
. Fal __:.-'-"__ 1
‘L \ P = 'IF T .'._ P //
05 = ‘ = —_— _n'ﬁ‘:.“'-a-:——_'-'E:F_-F'Ihll_Fﬂi -~
NN \. -,
04 = ""‘:— +
=i /
N B /

Copyright 19985-1553, Adobe Systems Inc., all rights reserved

22

Review: RGB Color Space

= define colors with (r, g, b)
amounts of red, green, and
blue

= used by OpenGL

s RGB color cube sits within
CIE color space

= subset of perceivable colors

1,1,0

1,1,1
Whi
0O hite

Yellow b,
0,1,0
-

Green

1,0,0
Red

Jo,1,1

Cyan

1.0,1
h’faganlu
0,0,0
Black 0,0,1

23

Review: Additive vs. Subtractive Colors

= additive: light o o o
= monitors, LCDs ¢ 1 R
= RGB model M G

= subtractive: pigment | Y | |1| | B
= printers

= CMY model .

|l
(G-
|

24

Review: HSV Color Space

Energy Dominant Wavelength : Hue

= hue: dominant wavelength, “color”
= saturation: how far from grey
= value/brightness: how far from

black/white

s cannot convert to RGB with matrix

alone

Green
120 v

Ny
)
N

2

“

Black

Intensity

Frequency

Ed

Red Violet

Ew

Energy

=
-
1
1

Pastel, Pale Color

Frequency

Ed----

PR |

Ew

Red Violet

Energy Very Saturated

Red Violet

Review: YIQ Color Space |

color model used for color TV~ 4 %
= Y is luminance (same as CIE) & "
= | & Q are color (not same | as HSI!)
= using Y backwards compatible for B/W TVs
= conversion from RGB is linear

Y| [030 059 011 |R
[1=10.60 =028 -032|G
1021 =052 031 | B

= green is much lighter than red, and red lighter
than blue

26

Review: Monitors

= monitors have nonlinear response to input

= characterize by gamma
= displayedintensity = a’ (maxIntensity)

= gamma correction
= displayedintensity =(a1/7) (maxIntensity)

= a (maxIntensity)

27

Lighting |

28

Goal

model interaction of light with matter in a way that
appears realistic and is fast

= phenomenological reflection models

= Ignore real physics, approximate the look
« simple, non-physical

« Phong, Blinn-Phong

= physically based reflection models

« Simulate physics

= BRDFs: Bidirectional Reflection Distribution
Functions

29

Photorealistic lllumination

77 K polygons
24 aera lights
solution render time : around 7200 sec

[eIectricimage.com3]O

Photorealistic lllumination

[electricimage.com3]l

Fast Local lllumination

32

lHlumination

= transport of energy from light sources to
surfaces & points

= Includes direct and indirect illumination

Images by Henrik Wann Jensen

33

Components of lllumination

= two components: light sources and surface properties
= light sources (or emitters)
= spectrum of emittance (i.e., color of the light)

= geometric attributes
= position
« direction
= Shape
= directional attenuation

= polarization

34

Components of lllumination

= surface properties
= reflectance spectrum (i.e., color of the surface)
= Subsurface reflectance
= geometric attributes

= position

= orientation

= Micro-structure

35

lllumination as Radiative Transfer

radiative heat transfer approximation
= Substitute light for heat

= light as packets of energy (photons)
= particles not waves
= model light transport as packet flow

energy thermometer/eye
packets

36

Light Transport Assumptions

= geometrical optics (light is photons not waves)
= Nno diffraction

| | single slit single int
light particles / | light waves new wavefront
<— @ >
SN e
l \\~I\bent ray?!

= NO polarization (some sunglasses)
= light of all orientations gets through

= no interference (packets don't interact)
= Which visual effects does this preclude?

37

Light Transport Assumptions |l

= color approximated by discrete wavelengths
= quantized approx of dispersion (rainbows)

= quantized approx of fluorescence (cycling
vests)

= NO propagation media (surfaces in vacuum)

= N0 atmospheric scattering (fog, clouds)
= Some tricks to simulate explicitly

= No refraction (mirages)
= light travels in straight line
= NO gravity lenses

38

Light Sources and Materials

= appearance depends on

= light sources, locations, properties

= material (surface) properties

= Viewer position
= |ocal illumination

= compute at material, from light to viewer
= global illumination (later in course)

= ray tracing: from viewer into scene

= radiosity: between surface patches

39

[llumination Iin the Pipeline

s |local illumination

= only models light arriving directly from light
source

= NO Interreflections and shadows

= Can be added through tricks, multiple
rendering passes

= light sources
= Simple shapes
= Mmaterials
= simple, non-physical reflection models

40

Light Sources

= types of light sources

» glLightfv (GL_LIGHTO,GL_POSITION, light[])
= directional/parallel lights

=« real-life example: sun

= Infinitely far source: homogeneous coord w=0
= point lights

= same intensity in all directions
= spot lights

» limited set of directions:

= point+direction+cutoff angle \\

| |
_—a < =
| |

41

| |
ION'\<§><I

Light Sources

= area lights
= light sources with a finite area
= more realistic model of many light sources

= not available with projective rendering pipeline,
(i.e., not available with OpenGL)

42

Light Sources

= ambient lights
= No identifiable source or direction

= hack for replacing true global illumination
= (light bouncing off from other objects)

o

—> «—

43

Ambient Light Sources

= scene lit only with an ambient light source

44

Directional Light Sources

= scene lit with directional and ambient light

Point Light Sources

= Scene lit with ambient and point light source

46

Light Sources

= geometry: positions and directions
= standard: world coordinate system
= effect: lights fixed wrt world geometry

= demo:
http://www.xmission.com/~nate/tutors.html

= alternative: camera coordinate system
» effect: lights attached to camera (car headlights)

= points and directions undergo normal
model/view transformation

s llumination calculations: camera coords

47

Types of Reflection

m Specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering. ;4

= diffuse reflection sends light in all directions with
equal energy.
= mixed reflection is a weighted

combination of specular and diffuse. M

48

Types of Reflection

= retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident

directions. X\

= gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of

rough surfaces.

49

Reflectance Distribution Model

= most surfaces exhibit complex reflectances
= vary with incident and reflected directions.
= model with combination

NN N X

specular + glossy + diffuse =
reflectance distribution

50

Surface Roughness

= at a microscopic scale, all

real surfaces are rough ~ N\

= cast shadows on
themselves L_,‘ L%g/@

shadow shadow

= “mask” reflected light: \

51

Surface Roughness

NORSN

= notice another effect of roughness:
=« each “microfacet” is treated as a perfect mirror.

= incident light reflected in different directions by
different facets.

= end result is mixed reflectance.
= Smoother surfaces are more specular or glossy.

= random distribution of facet normals results in diffuse
reflectance.

52

Physics of Diffuse Reflection

iIdeal diffuse reflection

= very rough surface at the microscopic level
= real-world example: chalk

= Microscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

= what does the reflected intensity depend on?

Sk

53

Lambert’s Cosine Law

» Ideal diffuse surface reflection

the energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the cosine
of the angle between that direction and the surface normal

s reflected intensity

= independent of viewing direction

= depends on surface orientation wrt light
= Often called Lambertian surfaces

54

Lambert’s Law

Lambert's Cosine Law

i A T T .
ir, A 7 A,
i - . "._III _.- ’
R L

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Computing Diffuse Reflection

= depends on angle of incidence: angle between surface
normal and incoming light

* Liiffuse = Kd Liight €08 © I -

= In practice use vector arithmetic
= Litfuse = Kd light @)

= always normalize vectors used in lighting
= n, 1should be unit vectors

= scalar (B/W intensity) or 3-tuple or 4-tuple (color)
= Ky diffuse coefficient, surface color
= |ign: INcoming light intensity
= lguses OULgoINg light intensity (for diffuse reflection)

56

Diffuse Lighting Examples

= Lambertian sphere from several lighting
angles:

= Need only consider angles from 0°to 90°
= demo: Brown exploratory on reflection

= http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/ex
ploratories/applets/reflection2D/reflection_2d_java_browser.html

57

Lighting li

58

Specular Reflection

= shiny surfaces exhibit specular reflection
=« polished metal
= glossy car finish I diffuse I
= specular highlight
= bright spot from light shining on a specular surface

= Vview dependent
= highlight position is function of the viewer’s position

diffuse

plus

specular

59

Physics of Specular Reflection

= at the microscopic level a specular reflecting
surface is very smooth

= thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

= the smoother the surface, the closer it
becomes to a perfect mirror

60

Optics of Reflection

» reflection follows Snell’'s Law:

= Incoming ray and reflected ray lie in a plane
with the surface normal

= angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal
7]
/ i 7

ﬂi D e(l)ight — e(r)eflection

61

Non-ldeal Specular Reflectance

Snell’'s law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

one option: model the microgeometry of the
surface and explicitly bounce rays off of it

or...

62

Empirical Approximation

= we expect most reflected light to travel in
direction predicted by Snell’'s Law

= but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

= as angle from ideal reflected ray increases,
we expect less light to be reflected

63

Empirical Approximation

= angular falloff
7]
4

<

!

]

= how might we model this falloff?

64

Phong Lighting

= most common lighting model in computer graphics
= (Phong Bui-Tuong, 1975)

n ..
— h
Ispecular o ksIlight (COS ¢) o

= gy - PUrEly empirical Z_
constant, varies rate of falloff

= kg: specular coefficient,
highlight color

= NO physical basis, works
ok In practice

65

Phong Lighting: The n Term

shiny

= Phong reflectance term drops off with divergence of viewing
angle from ideal reflected ray

= What does this term control, visually?

Viewing angle — reflected angle
66

Phong Examples

varying |

varying Nshiny

*1 1]

67

Calculating Phong Lighting

= compute cosine term of Phong lighting with vectors

n..
hin
— ® ST
Ispecular ksIlight (V l')
= V:unit vector towards viewer/eye _ &)
. At - -y
= r:ideal reflectance direction (unit vector) ; >
= kg specular component <) P
= highlight color

= |ignt INcoming light intensity

= how to efficiently calculate r ?

68

Calculating R Vector

P = N cos 0 = projection of L onto N

69

Calculating R Vector

P = N cos 0 = projection of L onto N
P=N(N-L)

70

Calculating R Vector

P=Ncos 6 |L||N|
P=Ncos6
P=N(N-L)

projection of L onto N
L, N are unit length

71

Calculating R Vector

P=Ncos6|L||N| projection of L onto N
P=Ncos®6 L, N are unit length
P=N(N-L)

2P=R+L

2P_-L=R
2(N(N-L))-L=R L

72

Phong Lighting Model

= combine ambient, diffuse, specular components

#lights

nshin
Itotal — ksIambient T le (kd (l'l * ll) T kS(V ¢ ri) ’)

i=1
= commonly called Phong lighting
= once per light

= once per color component

73

Phong Lighting: Intensity Plots

Phong

I:‘-:!I:mh'u-n'n:

§,= 60

=25

Paifruse

74

Blinn-Phong Model

= variation with better physical interpretation
= Jim Blinn, 1977

(x)=k_(hen) ™ e (x);with h=(1+v)/2

OI/tt

= h: halfway vector
= h must also be explicitly normalized: h / |h|
= highlight occurs when h near n

75

Light Source Falloff

= quadratic falloff

= brightness of objects depends on power per
unit area that hits the object

= the power per unit area for a point or spot light
decreases quadratically with distance

Area 4mr?

.
.
.
.
o
.
.
R
.
.
o
.
.
.

e
0
‘e
0

e
e
.

76

Light Source Falloff

= hon-quadratic falloff
= many systems allow for other falloffs
= allows for faking effect of area light sources

= OpenGL / graphics hardware
= [: intensity of light source
= X: Object point
« 1: distance of light from x

1
ar® +br+c

[(X)= -,

77

Lighting Review

= lighting models
= ambient
= normals don’t matter
= Lambert/diffuse
= angle between surface normal and light
= Phong/specular
= surface normal, light, and viewpoint

78

Lighting in OpenGL

= light source: amount of RGB light emitted

« value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

« every light source emits ambient, diffuse, and specular
light

= materials: amount of RGB light reflected

= value represents percentage reflected
e.g., (0.0,1.0,0.5)

= Interaction: multiply components
« red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

79

Lighting in OpenGL

gllighttv(GL_LIGHTO, GL_AMBIENT, amb_light_rgba);
gllighttv(GL_LIGHTO, GL_DIFFUSE, dif_light_rgba);
glLighttv(GL_LIGHTO, GL_SPECULAR, spec_light_rgba);
glLighttv(GL_LIGHTO, GL_POSITION, position);
glEnable(GL_LIGHTO);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);

glMaterialfv(GL_FRONT, GL_SHININESS, n);

= warning: glMaterial is expensive and tricky
= use cheap and simple glColor when possible
= see OpenGL Pitfall #14 from Kilgard’s list

http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

80

Shading

81

Lighting vs. Shading

= lighting

= process of computing the luminous intensity
(I.e., outgoing light) at a particular 3-D point,
usually on a surface

= Sshading

= the process of assigning colors to pixels

éf
<@
*

= (why the distinction?) /
O

82

Applying lllumination

= we now have an illumination model for a point
on a surface

s if surface defined as mesh of polygonal facets,
which points should we use?

= fairly expensive calculation

= several possible answers, each with different
implications for visual quality of result

83

Applying lllumination

= polygonal/triangular models
= each facet has a constant surface normal

= If light is directional, diffuse reflectance is
constant across the facedt.

84

Flat Shading

= simplest approach calculates illumination at a
single point for each polygon

= obviously inaccurate for smooth surfaces

85

Flat Shading Approximations

= If an object really is faceted,
s this accurate?

= NO!

= for point sources, the
direction to light varies

across the facet

= for specular reflectance,
direction to eye varies
across the facet

86

Improving Flat Shading

= what if evaluate Phong lighting model at each pixel
of the polygon?
= better, but result still clearly faceted

= for smoother-looking surfaces
we introduce vertex normals at each
vertex
= usually different from facet normal
= used only for shading

= think of as a better approximation of the real surface
that the polygons approximate

87

Vertex Normals

= vertex normals may be
= provided with the model
= computed from first principles

= approximated by
averaging the normals
of the facets that
share the vertex

88

Gouraud Shading

= most common approach, and what OpenGL does
« perform Phong lighting at the vertices
= linearly interpolate the resulting colors over faces
=« along edges

= along scanlines edge: mixofc,, c, C,

does this eliminate the facets? = .. 28 ... >

Co
Interior: mix of ¢1, c2, c3

edge: mix of ¢1, ¢3
89

Gouraud Shading Artifacts

= often appears dull, chalky

= lacks accurate specular component

= If included, will be averaged over entire
polygon

Cc, this vertex shading spread
this interior shading missed! over too much area 9%

Gouraud Shading Artifacts

= Mach bands
= eye enhances discontinuity in first derivative
= very disturbing, especially for highlights

91

Gouraud Shading Artifacts
= Mach bands

Discontinuity in rate
of color change
occurs here

92

Gouraud Shading Artifacts

= perspective transformations

= affine combinations only invariant under affine,
not under perspective transformations

= thus, perspective projection alters the linear
interpolation!

=

/

Gouraud Shading Artifacts

= perspective transformation problem

= colors slightly “swim” on the surface as objects
move relative to the camera

= usually ignored since often only small difference

= usually smaller than changes from lighting
variations

= to do it right
= either shading in object space
= Or correction for perspective foreshortening
= expensive — thus hardly ever done for colors

94

Phong Shading

= linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel

= same input as Gouraud shading
= pro: much smoother results
= con: considerably more expensive

= hot the same as Phong lighting
= common confusion

= Phong lighting: empirical model to calculate
illumination at a point on a surface

95

Phong Shading

= linearly interpolate the vertex normals
= compute lighting equations at each pixel
= can use specular component

#lights

Itotal — kalambiem‘ + Z Ii (kd (n . ll)+ ks (V . ri)nsmny]
=1

N, .
remember: normals used in

diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

96

Phong Shading Difficulties

= computationally expensive

= per-pixel vector normalization and lighting
computation!

= floating point operations required
= lighting after perspective projection
= messes up the angles between vectors
= have to keep eye-space vectors around
= No direct support in hardware
= but can be simulated with texture mapping

97

Shading Artifacts: Silhouettes

= polygonal silhouettes remain

Gouraud Phong

98

Shading Artifacts: Orientation

= interpolation dependent on polygon orientation
= Vview dependence!

Rotate -90°
and color
same point
)

Interpolate between
CD and AD

Interpolate between
AB and AD

Shading Artifacts: Shared Vertices

.
B

H

G

vertex B shared by two rectangles
on the right, but not by the one on
the left

first portion of the scanline
IS interpolated between DE and AC

second portion of the scanline
s interpolated between BC and GH

a large discontinuity could arise

100

Shading Models Summary

= flat shading

= compute Phong lighting once for entire
polygon
= Gouraud shading

= compute Phong lighting at the vertices and
interpolate lighting values across polygon

= Phong shading
= compute averaged vertex normals

= Interpolate normals across polygon and
perform Phong lighting across polygon

101

Shutterbug: Flat Shading

102

ing

Gouraud Shad

Shutterbug

103

Shutterbug: Phong Shading

104

Non-Photorealistic Shading

1+n-1

= cool-to-warm shading «k, = c=kc +(1-k)c,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 105

Non-Photorealistic Shading

= draw silhouettes: if (e-ny)(e-n,) <0, e=edge-eye vector
= draw creases: if (n,-n,) < threshold

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 106

Computing Normals

= per-vertex normals by interpolating per-
normals

=« OpenGL supports both
= computing normal for a polygon

107

Computing Normals

= per-vertex normals by interpolating per-
normals

=« OpenGL supports both
= computing normal for a polygon
« three points form two vectors

a-b

108

Computing Normals

= per-vertex normals by interpolating per-facet
normals

=« OpenGL supports both

= computing normal for a polygon
« three points form two vectors
= Ccross: normal of plane

109

Computing Normals

= per-vertex normals by interpolating per-facet
normals

=« OpenGL supports both
= computing normal for a polygon
= three points form two vectors
= cross: normal of plane

= wWhich side of plane is up?

= counterclockwise
point order convention

110

Specifying Normals

= OpenGL state machine
= uses last normal specified

= If no normals specified, assumes all identical

= per-vertex normals
gINormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal31(1,1,0);
glVertex3£(10,5,2);

= per-face normals
gINormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

111

