|¥?i$ University of British Columbia

= CPSC 314 Computer Graphics
May-June 2005
Tamara Munzner

Lighting/Shading |, II, 11l

Week 3, Tue May 24

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= P1 demos if you missed them
= 3:30-4:30 today

Homework 2 Clarification

= off-by-one problem in Q4-6
= Q4 should refer to result of Q1
= Q5 should refer to result of Q2
= Q6 should refer to result of Q3
= acronym confusion
= Q1 uses W2C, whereas notes say W2V
= world to camera/view/eye
= Q2 uses C2P, whereas notes say V2C, C2N
= Q3 uses N2V, whereas notes say N2D
= normalized device to viewport/device

N2D General Formulation

glViewport(c,d, a,b);

.1

(w;h)

NDCS —_—

oes Db

a
“101) |
©0

Reading: Today

= FCG Chap 8, Surface Shading, p 141-150
= RB Chap Lighting

Reading: Next Time

= FCG Chap 11.1-11.4

= FCG Chap 13

= RB Chap Blending, Antialiasing, Fog,
Polygon Offsets
= only Section Blending

Page 1

Review: Projection Taxonomy

planar
projections
perspective: / ‘Projectors
obllq e
1,2,3-point Projectors
parallel Prmecmrs L | converge

Fre]echon PI Fre]echon PI Fro]ec fon PI.

oblique orthographic ‘

cabinet cavalier \ @ bd
A.OBLIQUE B.AXONOMETRIC C.PERSPECTIVH

axonometric:

. top, B N http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
isometric

front, dimet

side dimetric
trimetric

Review: Midpoint Algorithm

= moving horizontally along x direction
= draw at current y value, or move up vertically to y+17?

= check if midpoint between two possible pixel centers
above or below line

candidates
= top pixel: (x+1,y+1)
= bottom pixel: (x+1, y) A
= midpoint: (x+1, y+.5)
= check if midpoint above or below line ——
= below: top pixel
= above: bottom pixel
= key idea behind Bresenham
= [demo] || 8

Review: Flood Fill

= simple algorithm
= draw edges of polygon
= use flood-fill to draw interior

N
P [N
%) N
(<=0 0| 0|
o
——]
1 Sa

Review: Scanline Algorithms

= scanline: a line of pixels in an image

= set pixels inside polygon boundary along
horizontal lines one pixel apart vertically

Review: General Polygon Rasterization

ik

E

= idea: use a parity test
for each scanline L

edgeCnt = 0;
for each pixel on scanline (1 to r)

if (oldpixel->newpixel crosses edge)
edgeCnt ++;

// draw the pixel if edgeCnt odd

if (edgeCnt % 2)
setPixel (pixel);

Review: Making It Fast: Bounding Box

= smaller set of candidate pixels

= loop over xmin, xmax and ymin,ymax
instead of all x, all y

¢ i1
¢ i1
¢ i1

:

Page 2

Review: Bilinear Interpolation

= interpolate quantity along L and R edges,
as a function of y
= then interpolate quantity as a function of x

P,
P, P(x,y)
Py
y l
P,

Review: Barycentric Coordinates

(oB.y) =

= Weighted combination of vertices 4 /1 (1:0.0)

= smooth mixing (@)
= speedup

= compute once per triangle

P=a R+ f-P, + 7P
a+pB+y=1
0<a,f,y <1 for points inside triangle

“convex combination
of points”

Review: Deriving Barycentric Coordinates

B (1,00
= non-orthogonal P00
coordinate system
o (0,0,1)
= P is origin, P,-Pg, P-
P, are basis vectors P,
P, (0,1,0)

= from bilinear
interpolation of point P
on scanline

/Review: Deriving Barycentric
Coordinates

= 2D triangle area

a/A

B=A, A (@B

7/A

A=+A, +A, +A,

Review: Simple Model of Color

= simple model based on RGB triples

= component-wise multiplication of colors
= (a0,a1,a2) * (b0,b1,b2) = (a0*b0, al1*b1, a2*b2)
Light x object = color

(‘ 1,1,08
N % = |97.0308

R

A

= why does this work?

Review: Trichromacy and Metamers

= three types of cones & _ oz L
= color is combination £% ,, AN\
. N =] /
of cone stimuli = s
. identi 0l
= metamer: identically P SR ——
perceived color wavelength (nm)
caused by very
different spectra Pure Bpschurs [PT—
L} L |
" - " -
L — L —
-
- e—

Page 3

Review: Color Constancy

Do they maich?

Image courtesy of Jonn MGann

Clarification/Review: Stroop Effect

n

= green
= purple
= red

= say what color the text is as fast as possible
= interplay between cognition and perception

Review: Measured vs. CIE Color Spaces

I a0
/\wl o
z ¥ E] i
z 3.
@ = [
g {1\] fo T
E R El VL2 XN
S]\ s
g 2 / L 3
:. ‘ R .Y
& [P \
L XL Y
i 0 o ™ - g w
Wavelength (nm) Wavelength (nm)

= measured basis
= monochromatic lights
= physical observations
= negative lobes

= transformed basis
= “imaginary” lights
= all positive, unit area
= Yis luminance

Review: Device Color Gamuts

= compare gamuts on CIE chromaticity diagram
= gamut mapping

Copyright 1995-1999, Adobe Systems Inc., all igh's reserved

22

Review: RGB Color Space

= define colors with (r, g, b) o i
amounts of red, green, and oo
blue et Srin
1,0,0
= used by OpenGL et oLl
0,0,0
Black 0,0,1
Blue
W

RGB color cube sits within
CIE color space

= subset of perceivable colors

Review: Additive vs. Subtractive Colors

= additive: light
= monitors, LCDs ¢ 1 R
- RGB model M|=1-G
= subtractive: pigment Y 1 B

= printers
o n

Page 4

Dominant Wavelength : Hue

Intensity

= hue: dominant wavelength, “color”
saturation: how far from grey

= value/brightness: how far from " hea
black/white I /\ ,,,,,

= cannot convert to RGB with matrix ™
alone ey

‘Green v
0 Frequenc

i Violet

Review: YIQ Color Space

color model used for color TV
= Y is luminance (same as CIE)
= | & Q are color (not same | as HSI!)
= using Y backwards compatible for B/W TVs
= conversion from RGB is linear

Y 030 059 011 | R
I|=10.60 -028 -032|G
Q

021 -052 031 |B
= green is much lighter than red, and red lighter
than blue

Q

26

Review: Monitors

= monitors have nonlinear response to input
= characterize by gamma
= displayedintensity = a’ (maxIntensity)
= gamma correction
= displayedIntensity =(“l/yﬂmaxlntensity)

= a (maxintensity)

Lighting |

Goal

model interaction of light with matter in a way that
appears realistic and is fast

= phenomenological reflection models

= ignore real physics, approximate the look

= simple, non-physical

=« Phong, Blinn-Phong

= physically based reflection models

= simulate physics

=« BRDFs: Bidirectional Reflection Distribution
Functions

Photorealistic lllumination

*around 7200 sec

[eleciricimage.com}]o

Page 5

Photorealistic lllumination

[eleciricimage.comz]1

Fast Local lllumination

Illumination

= transport of energy from light sources to
surfaces & points

= includes direct and indirect illumination

Images by Henrik Wann Jensen

Components of lllumination

= two components: light sources and surface properties
= light sources (or emitters)
= spectrum of emittance (i.e., color of the light)
= geometric attributes
= position
= direction
= shape
= directional attenuation
= polarization

Components of lllumination

= surface properties
= reflectance spectrum (i.e., color of the surface)
= subsurface reflectance
= geometric attributes

= position

= Orientation

= micro-structure

Illumination as Radiative Transfer

= radiative heat transfer approximation
= substitute light for heat

= light as packets of energy (photons)
= particles not waves

= model light transport as packet flow

energy thermometer/eye
packets

reflective objects

Page 6

Light Transport Assumptions

= geometrical optics (light is photons not waves)
= no diffraction

_ _ single slit single slit
light particles 1/' | light waves | new wavefront
N //’
-l E T -»-))))

N
N ey |

= No polarization (some sunglasses)
= light of all orientations gets through

= no interference (packets don't interact)
= which visual effects does this preclude?

Light Transport Assumptions Il

= color approximated by discrete wavelengths
= quantized approx of dispersion (rainbows)

= quantized approx of fluorescence (cycling
vests)

= no propagation media (surfaces in vacuum)
= no atmospheric scattering (fog, clouds)
= some tricks to simulate explicitly
= no refraction (mirages)
= light travels in straight line
= NO gravity lenses »

Light Sources and Materials

= appearance depends on

= light sources, locations, properties

= material (surface) properties

= viewer position
= local illumination

= compute at material, from light to viewer
= global illumination (later in course)

= ray tracing: from viewer into scene

= radiosity: between surface patches

lllumination in the Pipeline

= local illumination

= only models light arriving directly from light
source

= no interreflections and shadows

= can be added through tricks, multiple
rendering passes

= light sources
= simple shapes
= materials
= simple, non-physical reflection models

Light Sources

= types of light sources
» glLightfv(GL_LIGHTO,GL_POSITION, light[])
= directional/parallel lights

= real-life example: sun

= infinitely far source: homogeneous coord w=0
= point lights
= same intensity in all directions X
= spot lights !
1

= limited set of directions:

= point+direction+cutoff angle X\

41

O n e =

Light Sources

= area lights
= light sources with a finite area
= more realistic model of many light sources

= not available with projective rendering pipeline,
(i.e., not available with OpenGL)

42

Page 7

Light Sources

= ambient lights

= no identifiable source or direction

= hack for replacing true global illumination
= (light bouncing off from other objects)

S

43

Ambient Light Sources

= scene lit only with an ambient light source

:EIII

Directional Light Sources

= scene lit with directional and ambient light

Point Light Sources

= scene lit with ambient and point light source

Light Sources

= geometry: positions and directions
= standard: world coordinate system
= effect: lights fixed wrt world geometry

= demo:
http://www.xmission.com/~nate/tutors.html

= alternative: camera coordinate system
= effect: lights attached to camera (car headlights)

= points and directions undergo normal
model/view transformation

= illumination calculations: camera coords

47

Types of Reflection

= specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering.

= diffuse reflection sends light in all directions with
equal energy.
= mixed reflection is a weighted

combination of specular and diffuse. M

48

Page 8

Types of Reflection

= retro-reflection occurs when incident energy
reflects in directions close to the incident

direction, for a wide range of incident
directions.

= gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of

rough surfaces.
N

—

49

Reflectance Distribution Model

= most surfaces exhibit complex reflectances
= vary with incident and reflected directions.
= model with combination

specular + glossy + diffuse =
reflectance distribution

Surface Roughness

= at a microscopic scale, all
real surfaces are rough

= cast shadows on
themselves

shadow shadow

= “mask” reflected light:

asked Light

51

Physics of Diffuse Reflection

= ideal diffuse reflection

= very rough surface at the microscopic level
= real-world example: chalk

= Mmicroscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

= what does the reflected intensity depend on?

N

Surface Roughness

SR

= notice another effect of roughness:
= each “microfacet” is treated as a perfect mirror.
= incident light reflected in different directions by
different facets.
= end result is mixed reflectance.
= smoother surfaces are more specular or glossy.

= random distribution of facet normals results in diffuse
reflectance.

Lambert’s Cosine Law

= ideal diffuse surface reflection

the energy reflected by a small portion of a surface from a
light source in a given direction is proportional to the cosine
of the angle between that direction and the surface normal

= reflected intensity

= independent of viewing direction

= depends on surface orientation wrt light
= often called Lambertian surfaces

Page 9

Lambert’s Law

Lambert's Cosine Law

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Computing Diffuse Reflection

= depends on angle of incidence: angle between surface
normal and incoming light

* lgiffuse = Kd llight 05 © I n
= in practice use vector arithmetic
* ldiffuse = Kd liight @ *D 0

= always normalize vectors used in lighting
= n, 1 should be unit vectors

= scalar (B/W intensity) or 3-tuple or 4-tuple (color)
= kg diffuse coefficient, surface color

= ligy: incoming light intensity

= lygiuse: OUtgoOINg light intensity (for diffuse reflection)

Diffuse Lighting Examples

= Lambertian sphere from several lighting
angles:

= need only consider angles from 0°to 90°
= why?

= demo: Brown exploratory on reflection

= http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/ex
ploratories/applets/reflection2D/reflection_2d_java_browser.html

Lighting Il

Specular Reflection

= shiny surfaces exhibit specular reflection
= polished metal
= glossy car finish diffuse diffuse
plus
speculal
= specular highlight
= bright spot from light shining on a specular surface
= view dependent
= highlight position is function of the viewer’s position

Physics of Specular Reflection
= at the microscopic level a specular reflecting
surface is very smooth

= thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

= the smoother the surface, the closer it
becomes to a perfect mirror

Page 10

10

Optics of Reflection

= reflection follows Snell’s Law:
= incoming ray and reflected ray lie in a plane
with the surface normal
= angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal
_n
1 r
6,6, e(l)ighl = e(r)eﬂeclion

61

Non-ldeal Specular Reflectance

= Snell’s law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

= how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

= one option: model the microgeometry of the
surface and explicitly bounce rays off of it

= Or...

62

Empirical Approximation

= we expect most reflected light to travel in
direction predicted by Snell’'s Law

= but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

= as angle from ideal reflected ray increases,
we expect less light to be reflected

63

Empirical Approximation

= angular falloff

7]

= how might we model this falloff?

Phong Lighting

= most common lighting model in computer graphics
= (Phong Bui-Tuong, 1975)

iy
Ispecular = ksIlight (COS ¢) R

= Ny © PUrely empirical l_
constant, varies rate of falloff

= Kq: specular coefficient,
highlight color

= no physical basis, works

ok in practice

65

Phong Lighting: The n Term

shiny

= Phong reflectance term drops off with divergence of viewing
angle from ideal reflected ray

= what does this term control, visually?

Viewing angle — reflected angle

Page 11

11

Phong Examples

varying |

varying Nshiny

99000

67

Calculating Phong Lighting

= compute cosine term of Phong lighting with vectors

n,.
=k g (Vor) "

= V:unit vector towards viewer/eye B po\
= r:ideal reflectance direction (unit vector) 7 /‘
Bl

I

specular

= kg: specular component
= highlight color
= lign: incoming light intensity

= how to efficiently calculate r ?

Calculating R Vector

P = N cos 6 = projection of L onto N

69

Calculating R Vector

P = N cos 6 = projection of L onto N
P=N(N.L)

Calculating R Vector

P=Ncos6|L||N| projection of L onto N
P=Ncos#6 L, N are unit length
P=N(N.L)

Calculating R Vector

P=Ncos6|L||N| projection of L onto N

P=Ncos#6 L, N are unit length
P=N(N.L)

L
2P=R+L
2P-L=R
2(N(N-L))-L=R L

Page 12

Phong Lighting Model

= combine ambient, diffuse, specular components

#lights
nv iny
Itotal = ksIambient + ZII (kd (n. li) + ks(V .ri) i)
i=1
= commonly called Phong lighting
= once per light
= once per color component

Phong Lighting: Intensity Plots
[Phong] Puusicns

[T— Puotal

e N\ H»
4=257 . . \
&

b= 60"

Blinn-Phong Model

= variation with better physical interpretation
= Jim Blinn, 1977 n..
1,,(x)=k (hen) "™ o] (x);withh=(1+v)/2

= h: halfway vector
= h must also be explicitly normalized: h / |h|
= highlight occurs when h near n

¥ on

Light Source Falloff

= quadratic falloff

= brightness of objects depends on power per
unit area that hits the object

= the power per unit area for a point or spot light
decreases quadratically with distance

Area 47

Light Source Falloff

= non-quadratic falloff
= many systems allow for other falloffs
= allows for faking effect of area light sources
= OpenGL / graphics hardware
= I,: intensity of light source
= x: object point
= 1: distance of light from x

Lighting Review

= lighting models
= ambient
= normals don’t matter
= Lambert/diffuse
= angle between surface normal and light
= Phong/specular
= surface normal, light, and viewpoint

Page 13

13

Lighting in OpenGL

= light source: amount of RGB light emitted

= value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

= every light source emits ambient, diffuse, and specular
light

= materials: amount of RGB light reflected

= value represents percentage reflected
e.g.,, (0.0,1.0,0.5)

= interaction: multiply components
= red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

Lighting in OpenGL
glLightfv(GL_LIGHTO, GL_AMBIENT, amb_light_rgba);
glLightfv(GL_LIGHTO, GL_DIFFUSE, dif_light_rgba);
glLightfv(GL_LIGHTO, GL_SPECULAR, spec_light_rgba);
glLightfv(GL_LIGHTO0, GL_POSITION, position);
glEnable(GL_LIGHTO);
glMaterialfv(GL_FRONT, GL._AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

= warning: glMaterial is expensive and tricky
= use cheap and simple glColor when possible

= see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/Kilgard Techniques/oglpitfall/

Shading

81

Applying lllumination

= we now have an illumination model for a point
on a surface

= if surface defined as mesh of polygonal facets,
which points should we use?
= fairly expensive calculation

= several possible answers, each with different
implications for visual quality of result

83

Lighting vs. Shading

= lighting
= process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

= shading

= the process of assigning colors to pixels

« (why the distinction?) // %
()
-

82

Applying lllumination

= polygonal/triangular models
= each facet has a constant surface normal

= if light is directional, diffuse reflectance is
constant across the facet.

= why?

Page 14

14

Flat Shading

= simplest approach calculates illumination at a
single point for each polygon

= obviously inaccurate for smooth surfaces

85

Flat Shading Approximations
= if an object really is faceted,
is this accurate?
= no!
= for point sources, the —

direction to light varies
across the facet

= for specular reflectance,)
direction to eye varies
across the facet .

Improving Flat Shading

= what if evaluate Phong lighting model at each pixel
of the polygon?

= better, but result still clearly faceted

= for smoother-looking surfaces
we introduce vertex normals at each
vertex

= usually different from facet normal
= used only for shading

= think of as a better approximation of the real surface
that the polygons approximate

87

Vertex Normals

= vertex normals may be
= provided with the model
= computed from first principles

= approximated by
averaging the normals
of the facets that
share the vertex

Gouraud Shading

= most common approach, and what OpenGL does
= perform Phong lighting at the vertices
= linearly interpolate the resulting colors over faces
= along edges
= along scanlines

edge: mixof ¢, ¢, | C;

does this eliminate the facets? ™.

interior: mix of ¢1, c2, ¢3
edge: mix of c1, c3
89

Gouraud Shading Artifacts

= often appears dull, chalky
= lacks accurate specular component

= if included, will be averaged over entire
polygon

L. b

C, this vertex shading spread
over too much area %

this interior shading missed!

Page 15

15

Gouraud Shading Artifacts

= Mach bands
= eye enhances discontinuity in first derivative
= very disturbing, especially for highlights

91

Gouraud Shading Artifacts

= Mach bands

Discontinuity in rate
of color change
occurs here

92

Gouraud Shading Artifacts

= perspective transformations

= affine combinations only invariant under affine,
not under perspective transformations

= thus, perspective projection alters the linear
interpolation!

i

Gouraud Shading Artifacts

= perspective transformation problem

= colors slightly “swim” on the surface as objects
move relative to the camera

= usually ignored since often only small difference

= usually smaller than changes from lighting
variations

= to do it right
= either shading in object space
= or correction for perspective foreshortening
= expensive — thus hardly ever done for colors

Phong Shading

= linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel i
= same input as Gouraud shading
= pro: much smoother results
= con: considerably more expensive

= not the same as Phong lighting
= common confusion
= Phong lighting: empirical model to calculate
illumination at a point on a surface

95

Phong Shading

= linearly interpolate the vertex normals
= compute lighting equations at each pixel
= can use specular component
#lights
Itntal = kaIambient + Z Ii (kd (n : li)+ kS (V : ri)nmmv]

1 i=1

remember: normals used in
diffuse and specular terms

..................

discontinuity in normal’s rate of
change harder to detect

Page 16

Phong Shading Difficulties

= computationally expensive

= per-pixel vector normalization and lighting
computation!

= floating point operations required
= lighting after perspective projection
= messes up the angles between vectors
= have to keep eye-space vectors around
= no direct support in hardware
= but can be simulated with texture mapping

97

Shading Artifacts: Silhouettes

= polygonal silhouettes remain

Gouraud Phong

98

Shading Artifacts: Orientation
= interpolation dependent on polygon orientation
= view dependence!

Rotate -90°
and color
same point
—

S

Interpolate between
CD and AD

Interpolate between
AB and AD

Shading Artifacts: Shared Vertices

vertex B shared by two rectangles
on the right, but not by the one on
the left

D C H
-| first portion of the scanline
-G is interpolated between DE and AC
. second portion of the scanline
is interpolated between BC and GH
E A F

a large discontinuity could arise

Shading Models Summary

= flat shading
= compute Phong lighting once for entire
polygon
= Gouraud shading
= compute Phong lighting at the vertices and
interpolate lighting values across polygon
= Phong shading
= compute averaged vertex normals

= interpolate normals across polygon and
perform Phong lighting across polygon

101

Shutterbug: Flat Shading

102

Page 17

17

Shutterbug: Gouraud Shading

103

Shutterbug: Phong Shading

Non-Photorealistic Shading

= cool-to-warm shading &, = %,c =k, +(1-k,)c,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

105

Non-Photorealistic Shading

= draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
= draw creases: if (n,-n,) < threshold

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 106

Computing Normals

= per-vertex normals by interpolating per-facet
normals

= OpenGL supports both
= computing normal for a polygon

107

Computing Normals

= per-vertex normals by interpolating per-facet
normals

= OpenGL supports both
= computing normal for a polygon
= three points form two vectors

Page 18

18

Computing Normals

= per-vertex normals by interpolating per-facet
normals
= OpenGL supports both

= computing normal for a polygon
= three points form two vectors
= cross: normal of plane

Computing Normals

= per-vertex normals by interpolating per-facet
normals
= OpenGL supports both

= computing normal for a polygon
= three points form two vectors
= cross: normal of plane

= which side of plane is up?,

= counterclockwise
point order convention

110

Specifying Normals

= OpenGL state machine
= uses last normal specified
= if no normals specified, assumes all identical

[} per—ver‘[ex normals
gINormal3f(1,1,1);
glVertex3f(3.4,5);
gINormal3f(1,1,0);
glVertex3f(10,5,2);

= per-face normals
gINormal3f(1,1,1);
glVertex3f(3.4,5);
glVertex3f(10,5,2);

111

Page 19

19

