University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner

Rasterization, Interpolation, Vision/Color

Week 2, Thu May 19

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= reminder: extra lab coverage with TAs

= 12-2 Mondays, Wednesdays

= for rest of term

= just for answering questions, no presentations
= signup sheet for P1 demo time

= Friday 12-5

Reading: Today

s FCG Section 2.11 Triangles (Barycentric
Coordinates) p 42-46

s FCG Chap 3 Raster Algorithms, p 49-65
= except 3.8
s FCG Chap 17 Human Vision, p 293-298

= FCG Chap 18 Color, p 301-311
= until Section 18.9 Tone Mapping

FCG Errata

= p 54
= triangle at bottom of figure shouldn’t have
black outline

= P63
= The test if numbers a |x| and b |v| have the

same sign can be implemented as the test
ab > 0.

Reading: Next Time

s FCG Chap 8, Surface Shading, p 141-150
= RB Chap Lighting

Arbitrary Rotation

Y 7 W
v
x U
= problem:
= given two orthonormal coordinate systems XYZ and UVW
= find transformation from to
= answer:

= transformation matrix R whose columns are U,V,W:

R=u v. w

Review: Projective Rendering Pipeline

object world viewing
_,| modeling | viewing prolectlor]
transformation transformation transformation clioping
OCS - object/model coordinate system C2N CCS
perspective
WGCS - world coordinate system divide |normalized
VCS - viewing/camera/eye coordinate device
system J y l N2D NDCS
TN . viewport
CGCS - clipping coordinate system transformation
NDCS - normalized device coordinate 1 device
system DCS

DCS - device/display/screen coordinate
system /

Review: Camera Motion

= rotate/translate/scale difficult to control
= arbitrary viewing position
= eye point, gaze/lookat direction, up vector

y

WCS

lookat > @

up

eye ///,/

Peye

N

/ Pref

AN

Review: World to View Coordinates

= translate eye to origin
= rotate vector (lookat — eye) to w axis
= rotate around w to bring up into vw-plane

y lookat > @
X Pref
WCS Ny >\
7 VGS up} _ux u, Uu, —uee
eye N 1% 1% v, —Vvee
/</\ MW2V= W W, wW. —wee
Peye R
u O 0 O 1

W . —

Moving Camera or World?

= two equivalent operations
= Mmove camera one way vs. move world other way

= example
« Initial OpenGL camera: at origin, looking along -z axis
« create a unit square parallel to camera at z =-10

« translate in z by 3 possible in two ways

= camera moves to z = -3
= Note OpenGL models viewing in left-hand coordinates

= camera stays put, but moves to -7/

= resulting image same either way

= possible difference: are lights specified in world or view

coordinates? o

World vs. Camera
Coordinates

a= (1,1)W

b = (151)01 = (9.9)w

C = (1 51)cz= (1 ,3)01 — (

w

11

Review: Graphics Cameras

= real pinhole camera: image inverted

eye
: point
image
plane {><

= computer graphics camera: convenient equivalent

eye
point

center of _
projection Image
plane

12

Review: Basic Perspective Projection

,_y-d

similar triangles
> y=——

y _)
Yy P(x,y,z) d < <
P(X,y’,Z) y=2% Z'=d
S <

| z
z’=d
z/id homogeneous [.] 1 O O ()_
N coords y 0 1 0 0
z/d 7 O 0 1 O
) d 0 0 1d 0

Perspective Projection

= desired result for a point [x, y, z, 1]' projected
onto the view plane:

X x oy
d 7z d z
x,:x.d: X | y':y.d: y | g:d
z z/d z z/d

= what could a matrix look like to do this?

14

IS homogenized version of

where w = z/d

oo O =

o o = O

—_ O O

_— N = =

15

Review: Orthographic Cameras

= center of projection at infinity
= NO perspective convergence
= Jjust throw away z values

1000
0100
0000

0001

— N = =

16

Review: Transforming View Volumes

perspective view volume orthographic view volume

=to
> x=left y p/\/

z —
x=right
VCS
X /z:-far

Z=-near

NS @ (1,1,1)

(-1,-1,-1) \\/x

17

Review: Ortho to NDC Derivation

= Scale, translate, reflect for new coord sys
VCS NDCS

x=left y=top @ (1 1 ,1)
// z
Zlk//\ x=right (-1 ,-1 ,-1)‘\\/)(

/z:-far

y=bottom

z=-near 2 0 0 _ right +left |
right —left right —left
| 0 2 0 __top +Dbot
P'= top —bot top—bot |P
0 0 -2 _ far +near
far —near far —near
0 0 0 1 18

Review: NDC to Viewport Transformation

= 2D scaling and translation

(1) (w,h)

NDCS DCS b
I a
('1!'1) = y
(0,0) X
X +1
Xppg = W(wpes T 1) OpenGL
2
(+1) glViewport (x,y,a,b);
-y YNDCS default:
Ybcs
2 glViewport (0,0, w,h);
_ (Zypes +1)

ipcs =
2 19

Clarification: N2V Transformation

= general formulation
= translate by
= X Offset, width/2
= ¥ Offset, height/2
= scale by width/height
m reflect in y for upper vs. lower left origin

s FCG includes additional translation for pixel
centers at (.5, .5) instead of (0,0)

» feel free to ignore this

20

Review: Perspective Normalization

= perspective viewing frustum transformed to
cube

= orthographic rendering of cube produces same
image as perspective rendering of original

21

Review: Perspective Normalization

viewing clipping

VCS

CCS

__,| projection
transformation

alter w

normalized
device

_

perspective
division
/| W

NDCS

= distort such that orthographic projection of
distorted objects is desired persp projection

= separate division from standard matrix

multiplies

= Clip after warp, before divide
= division: normalization

22

Review: Coordinate Systems

Projection
Mlatrizx

Diwride by W

=cale &
Bias

http.//www.btinternet.com/~danbgs/perspective/ 23

Review: Perspective Derivation

- 2n

r—I

r+1 0
r—I
t+b 0
t—b

—(f+n) —-2fn
f—n f—n
—1 0

NDCS

x=right

z=-far

(-1,-1 ,-1)‘\\/,(z

(1,1,1)

24

Review: Field-of-View Formulation

= FOV in one direction + aspect ratio (w/h)
= also set near, far

25

Projection Wrapup

26

Projection Taxonomy

planar
projections

perspective: IS lli'

23-point o rallel RACO.
/ \ Projection PlI. Pl. Projection PI.
orthographic

oblique <>

cabinet cavalier \ N\
A.OBLIQUE B.AXONOMETRIC C.PERSPECTIVE

axonometric:
top, .) http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
iIsometric
front, dimetric
side . i
trimetric

27

Perspective Projections
= classified by vanishing points

one-point
perspective

< -

\/

two-point

perspective three-point

perspective

Parallel Projection

= projectors are all parallel
= VS. perspective projectors that converge
= orthographic: projectors perpendicular to

projection plane

= oblique: projectors not necessarily
perpendicular to projection plane

Orthographic

@3

Oblique

Axonometric Projections

= projectors perpendicular to image plane

= select axis lengths

2 BEqual axes
2 Eqgual angles

A ISOMETRIC B.DIMETRIC C.TRIMETRIC

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20 50

= lengths remain constant

= both have true front view
= cavalier: distance true
= cabinet: distance half

)

Y4

y

Oblique Projections

= projectors oblique to image plane
= select angle between front and z axis

cavalier

a

X

di|<a

d/2

X

cabinet

31

Demos

= Tuebingen applets from Frank Hanisch

= http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/
Appletindex.html#Transformationen

32

Rasterization

33

Scan Conversion - Rasterization

= convert continuous rendering primitives into
discrete fragments/pixels
= lines
= midpoint/Bresenham
= triangles
= flood fill
= Scanline
« Implicit formulation
= Interpolation

34

Scan Conversion

= given vertices in DCS, fill in the pixels
= start with lines

//

Basic Line Drawinc

Line (xy, y,, X, ¥,)

begin
float dx,dy, x, y, slope ;
y=mx+b dx & X; = X;
dy & Y= Yo;
(¥, — Vo) b0
Y= (x_xo)+yO d)/ :
(x, — xo) slope & i
= goals Y < Y
= integer coordinates for x from x, to x, do
= thinnest line with no gaps begin
= assume dy PlotPixel (x, Round
= X, < X, Slope 0< /dx<1 y &< y + slope ;

end ;
= how can we do this quickly?

end ;

Midpoint Algorithm

moving horizontally along x direction

« draw at current y value, or move up vertically to y+1?

« check if midpoint between two possible pixel centers
above or below line

candidates

= top pixel: (x+1,y+1)

= bottom pixel: (x+1, y)

midpoint: (x+1, y+.5)

check if midpoint above or below line
= below: top pixel

= above: bottom pixel

key idea behind Bresenham

=« [demo]

37

Making It Fast: Reuse Computation

midpoint: if f(x+1, y+.5) < 0 theny = y+1
on previous step evaluated f(x-1, y-.5) or f(x-1, y+.05)

f(x+1,y) = H(X,y) + (Yo-¥4)
f(x+1, y+1) = f(X,y) + (Yo~ Y1) + (X4 X0)

y=yO0
d = £(x0+1, y0+.5)
for (x=x0; x <= x1; x++) {
draw(x,y);
if (d<0) then ({
y=y+1;
d=d+ (x1 -x0) + (y0-vy1)
} else {
d=d+ (yO-vyl)

38

Making It Fast: Integer Only

midpoint: if f(x+1, y+.5) < 0 theny = y+1

on previous step evaluated f(x-1, y-.5) or f(x-1, y+.05)
f(x+1,y) = f(x,y) + (Yo-Y4)

f(x+1, y+1) = f(X,y) + (Yo- Y1) + (X4~ X0)

y=yO0
y=y0 2d = 2*(y0-y1) (x0+1) + (x1-
d = £(x0+1, y0+.5) x0) (2y0+1) + 2x0y1l — 2x1y0
for (x=x0; x <= x1; x++) { for (x=x0; x <= x1; x++) {
draw(x,y); draw(x,y);
if (d<0) then { if (d<0) then {
y=y+1 y=y+1;
d=d+ (x1 -x0) + (y0O-yl) d=d+ 2(x1-x0) + 2(y0 -y1)
} else { } else {

d=d+ (y0-yl) d=d+2(y0-yl)

Rasterizing Polygons/Triangles

= basic surface representation in rendering
« lowest common denominator

= Can approximate any surface with arbitrary accuracy
= all polygons can be broken up into triangles

= guaranteed to be:
= planar
=« triangles - convex
« simple to render
= can implement in hardware

40

Triangulation

= convex polygons easily
triangulated

= concave polygons present
a challenge

OpenGL Triangulation

= simple convex polygons
= break into triangles, trivial
= gIBegin(GL_POLYGON) ... glEnd()

= concave or non-simple polygons
= break into triangles, more effort

= gluNewTess(), gluTessCallback(), ...

42

Problem

= input: closed 2D polygon
= problem: fill its interior with specified color on

graphics display
= assumptions <> ~
= simple - no self intersections /
= simply connected i
= solutions >
= edge walking x I .

Flood Fili

= simple algorithm
= draw edges of polygon
= use flood-fill to draw interior

N

[=|O|O| O|==

44

Flood Fill

= start with seed point
= recursively set all neighbors until boundary is hit

&?

o

/F{ /971/0)

i

45

Flood Fili

= draw edges

m Fun.
FloodFill (Polygon P , int x, int y, Color C)
if not (OnBoundary (x,y,P)or Colored (x,y,C))
begin
PlotPixel (x,y,C);
FloodFill (P,x+1,y,C);
FloodFill (P,x,y+1,C);
FloodFill (P,x,y —1,C);
FloodFill (P,x—-1,y,C);

end ;

s drawbacks?

46

Flood Fill Drawbacks

= pixels visited up to 4 times to check if already set

= need per-pixel flag indicating if set already
= must clear for every polygon!

47

Scanline Algorithms

= scanline: a line of pixels in an image

= set pixels inside polygon boundary along
horizontal lines one pixel apart vertically

48

General Polygon Rasterization

= how do we know whether given pixel on
scanline is inside or outside polygon?

49

General Polygon Rasterization

12

10 -

= Idea: use a parity test

R = o0 OO

for each scanline |
edgeCnt = 0O; i
for each pixel on scanline (1 to r)

if (oldpixel->newpixel crosses edge)
edgeCnt ++;

// draw the pixel if edgeCnt odd
if (edgeCnt % 2)
setPixel (pixel) ;

50

Making It Fast: Bounding Box

= smaller set of candidate pixels

= loop over xmin, xmax and ymin,ymax
instead of all x, all y

L L

e

e
[T]

L
]

)
It it it Bt i i it i

'-',._" -
Ny
e i e g

— A e ees
L L L L L L L L L L L L L L L L LNt Y
e e e e e e e i

Triangle Rasterization Issues

M

= moving slivers :i

= shared edge ' '
ordering

\ \

"

52

Triangle Rasterization Issues

= pixels with centers inside triangle edges

=« draw them: order of triangles matters (it shouldn’t)
« don’t draw them: gaps possible between triangles

= nNeed a consistent (if arbitrary) rule

= example: draw pixels on left or top edge, but not
on right or bottom edge

« example: check if triangle on same side of edge as
offscreen point

53

Interpolation

54

Interpolation During Scan Conversion

= drawing pixels in polygon requires
interpolating values between vertices

= Z values

= ,0,0 colour components
= use for Gouraud shading

= U,v texture coordinates
« NNy, N, surface normals
= equivalent methods (for triangles)
= bilinear interpolation
= barycentric coordinates

55

Bilinear Interpolation

= interpolate quantity along L and R edges,
as a function of y

= then interpolate quantity as a function of x

56

Barycentric Coordinates

= Smooth mixing (0B.y) =
= Speedup
= compute once per triangle

"7):05.1)1 + 6P, + 7P
4a+ﬂ+7=1

0<a, [,y <1 for points inside triangle
—

“convex combination
of points”™

57

Deriving Barycentric Coordinates |

= hon-orthogonal coordinate system

= P4 Is origin

= P,-P,, P,-P, are basis vectors
P=P,+B(P,-P,)+yP,-P,)

P=(1-B- 7P +B(P,)+y(P) 000

P=a(P,)+S(P,)+ ¥(P)
(0,0,1)

P

0,1,0
P, (01,0

Deriving Barycentric Coordinates Il

= from bilinear interpolation of point P on
scanline

d
P =P +—1—(P,—P
L 2 d1+d2 (3 2)

d,)P, + 4,
d, +d, d, +d,

— d2 I)z 4+ dl
d, +d, d, +d,

=(1-

P3:

€

59

Deriving Barycentric Coordinates Il

= Similarly

b
P,=P,+——(P-P
R 2 b1+b2(1 2)

=(1- b)P, + b
b, +b, b, +b,

= P, + 4
b, +b, b, +b,

P1:

B

Deriving Barycentric Coordinates Il

= combining p__S p.
c,+c, ¢+,

d d
Pp=—=—P+—
d, +d, d, +d,

-_b P, + b
b, +b, b, +b,

¢, P

R

g

B

p— > d, P, + d1P3_|_Cl b, P, + blpl
¢, +c,\ d +d, d, +d, ¢, +c,\ b +b, b, +b,

61

Deriving Barycentric Coordinates I

mthus P=a,-P +a,-P, + a;-P, with
¢ b,
c,+c, b,+b,

o =

B =) d, LG b,
c,+c,d +d, c +c, b+b,
¢, d,

c,+c, d +d,

7/:

= can verify barycentric properties
a+pB+y=1, 0<La,pB,y<1

62

Deriving Barycentric Coordinates il

= 2D triangle area (B =

a=A, A

,BIA /A (o,p.y) =
B

7/=API/A

A=+A, +A, +A,

63

Vision/Color

64

Simple Model of Color

= simple model based on RGB triples

= component-wise multiplication of colors

= (a0,a1,a2) * (b0,b1,b2) = (a0"b0, a1*b1, a2*b2)
Light x object = color

0 k 1.1.0.8
“~
-’ N\ W = }-:]_?,[Z:'_Zﬁi:i].&

= why does this work?

65

Basics Of Color

s elements of color:

lllumina'fioly ; Perception

" Reflectance F w

66

Basics of Color

= physics
= lllumination
= electromagnetic spectra
= reflection
= material properties

= Surface geometry and microgeometry (i.e.,
polished versus matte versus brushed)

= perception
= physiology and neurophysiology
= perceptual psychology

67

Electromagnetic Spectrum

700 nm 400 nm

104 105 108 1014012101 10 101 462
L1 11 1= B L3 frequency (Hz)
€T T T T T 1T T T T — wavelength (hm)

10191013 1011 10% 107 10° 10° 101 101 103

}(/ \

AM radio / microwave\ ultraviolet \ gamma rays
FM radio, TV infrared X-rays

68

White Light

= sun or light bulbs emit all frequencies within
the visible range to produce what we
perceive as the "white light"

Energy

‘ NN\ A\

Frequency
-

Red Violet

69

Sunlight Spectrum

450 0 25{) Ll 6

Emission Graph

1 1 1 1
0 700 750 8 0

S
8 |
riil
6l
|
40
3
20
10
0

T T T [T 1T 11 I T T T [T T T T [T T T T [T T T T [T T T T [T T T T [T T T T [1 T 11

350 4K} 450 S 250 6k} 650 il 7ol L 850
PWovelength ()

Electromagnetic Spectrum

Intensity

White Light and Color

= when white light is incident upon an object,

some frequencies are reflected and some are
absorbed by the object

= combination of frequencies present in the
reflected light that determinses what we
perceive as the color of the object

71

Hue

= hue (or simply, "color") is dominant
wavelength/frequency

|

Energy Dominant Wavelength : Hue

Intensity

Frequency
_

Red Violet

= Integration of energy for all visible wavelengths is
proportional to intensity of color

72

Saturation or Purity of Light

= how washed out or how pure the color of the
light appears

= contribution of dominant light vs. other
frequencies producing white light

= saturation: how far is color from grey

= pink is less saturated than red, sky blue is less
saturated than royal blue

Pastel, Pale Color

Frequency

Red

o
Violet

Very Saturated

o - k/__) -Frequency
T

Red

Violet

Intensity vs. Brightness

= intensity : measured radiant energy emitted
per unit of time, per unit solid angle, and per
unit projected area of the source (related to
the luminance of the source)

m lightness/brightness : perceived intensity of
light
= nonlinear

74

Physiology of Vision

s the retina

= rods lens | oo
| b/ W, edgeS i /—_\ N reting
= CONes PUbg /(i(?En"al
= color! g ™ \ "
(. l opticd
A 4
\!
cornesg /
homor . ciliary —

muscles
sclera 75

Physiology of Vision

= center of retina is densely packed region
called the fovea.

= cones much denser here than the periphery

1.35 mm from rentina center

8 mm from rentina center

76

Foveal Vision

= hold out your thumb at arm’s length

77

Trichromacy

three types of cones

= L or R, most sensitive to red light (610 nm)

=« M or G, most sensitive to green light (560 nm)
= S or B, most sensitive to blue light (430 nm)

- |
M
| S

ht fraction
sorbed

b

0.1

l
a
'

0= 1 -
400 200 600 700
wavelength (nm)

= color blindness results from missing cone type(s)
78

Metamers

= a given perceptual sensation of color derives
from the stimulus of all three cone types

Pure Spectural Mixed-spectra
Color Metamer
S |

M B
L I

- -,

[—

= Identical perceptions of color can thus be caused by
very different spectra

I

79

Metamer Demo

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

80

Adaptation, Surrounding Color

= color perception is also affected by
= adaptation (move from sunlight to dark room)

= surrounding color/intensity:
= Simultaneous contrast effect

81

Bezold Effect

= iImpact of outlines

Color/Lightness Constancy

'a
Do they match?] :

Image courtesy of John MCann

83

Color/Lightness Constancy

Do they match?

84

Color/Lightness Constancy

85

Color/Lightness Constancy

.|h' “
]

86

Color/Lightness Constancy

87

Color/Lightness Constancy

88

Color
Constancy

= automatic “white
balance” from change
In illumination

= vast amount of
processing behind the
scenes!

= colorimetry vs.
perception

From Color Appearance Models, fig 8-1

= red

= blue

= orange
= purple
= green

Stroop Effect

90

Stroop Effect

m green
= purple
= red

= Interplay between cognition and perception

91

Color Spaces

= three types of cones suggests ARERS:
color is a 3D quantity. how to

define 3D color space?

Lilamda)

= idea: perceptually based measurement
= shine given wavelength (A) on a screen

= user must control three pure lights producing
three other wavelengths (say R=700nm,
G=546nm, and B=436nm)

= adjust intensity of RGB until colors are identical

= this works because of metamers!
92

Negative Lobes

!

= exact target match with

phosphors not possible ... /\ /\
amounts

400 ™,/ 700

wavelength (nm)

= some red had to be added to target color to permit exact match
using “knobs” on RGB intensity output of CRT

= equivalently theoretically to removing red from CRT output

= figure shows that red phosphor must remove some cyan for
perfect match

= CRT phosphors cannot remove cyan, so 500 nm cannot be
generated

93

Negative Lobes
= can't generate all other wavelenths with any
set of three positive monochromatic lights!

= solution: convert to new synthetic coordinate
system to make the job easy

94

CIE Color Space

= CIE defined three “imaginary” lights X, Y,
and Z, any wavelength A can be matched
perceptually by positive combinations

Note that:
X~R
Y ~G
Z~B

-H-H"'\—_
I D D R D N D R N R I

390 430 470 510 550 390 B30 BYOD 710 95

Measured vs. CIE Color Spaces

) T T ew T]
a. i L 144 -'I-——-II—_ ------------------------------ ;— ------
= 21| i E | I| i
= } E e '| " | .
g x
g | ? R 1_1{;&.‘ (4]
15 1.5------------------i--------- . E 11| WS S [— I S— 3 _____;'-_."T___"l ________________
SR S - A A N = JT TN h\
| [.E e IlI i~ 7- '-, i
E os| i B i~ AT S— .
o | Fo~ ¥ S
o : [+ %] gt '-“-"J.—'--""""-—_'_.‘:-l-.:': """""""" ;\ """ | p——
\\i/ AN |
i 500 00 400 500 B0F o0
Wavelength (nm) Wavelength [nm)
= Mmeasured basis = transformed basis
= monochromatic lights = “imaginary” lights
= physical observations » all positive, unit area
= nhegative lobes = Y is luminance, no hue

= X,Z no luminance

96

CIE Gamut and Chromaticity Diagram
= 3D gamut

+ I

08

07 - Tares

05 |

BIkt

04

03

0.2

» chromaticity diagram " e

= hue only, nointensity °c & @ = w = w w x

RGB Color Space (Color Cube)

= define colors with (r, g, b)
amounts of red, green, and
blue

= used by OpenGL
= hardware-centric

s RGB color cube sits within
CIE color space

= subset of perceivable colors
= scale, rotate, shear cube

1,1,0

1,1,1
Whi
0O hite

Yellow b,
0,1,0
-

Green

1,0,0
Red

Jo,1,1

Cyan

1.0,1
h’faganlu
0,0,0
Black 0,0,1

98

Device Color Gamuts

= use CIE chromaticity diagram to compare the
gamuts of various devices

« X, Y, and Z are hypothetical light sources, no
device can produce entire gamut

PUEEEEE color printer
- N &

VaaNEEEEE m;;&f%
M\‘II " color monitor — b‘k
A\l 041} 7 /\\-!\
Jnlr;; .. Y
0z I 0e i .'\.x'_t o

0 04 0.i

Gamut Mapping

Where does
this color go?

CIELAB

Copyright 1995-1539, Adobe Systems Inc., all rights reserved

100

Additive vs. Subtractive Colors

= additive: light o o o
= monitors, LCDs ¢ 1 R
= RGB model M G

= subtractive: pigment | Y | |1| | B
= printers

= CMY model .

|l
(G-
|

101

HSV Color Space

= Mmore intuitive color space for people

= H=Hue
= S = Saturation
= V = Value

= Or brightness B
= Or intensity |
= Or lightness L

Green
120 v

Hue

Saturation

Colors

id _uskam

Value

] 4

Cancel

Preview

e

_urrent

1UZ

HSI Color Space

= conversion from RGB
= not expressible in matrix

I:R G+ B
3
H =cos™

min(R+ G

B)

S=1
1

R-G)+(R-B)

J(R=G)* +(R-B)(G - B)

103

YIQ Color Space |

color model used for color TV~ 4 %
= Y is luminance (same as CIE) & "
= | & Q are color (not same | as HSI!)
= using Y backwards compatible for B/W TVs
= conversion from RGB is linear

Y| [030 059 011 |R
[1=10.60 =028 -032|G
1021 =052 031 | B

= green is much lighter than red, and red lighter
than blue

104

Luminance vs. Intensity

e
- |uminance T —
= 0.299R + 0587G +0.114B (a) Colour Image

= Intensity/brightness
=« I/V/B of HSI/HSV/HSB
» 0.333R + 0.333G + 0.333B

(b) Intensity Image

(c) Luminance Imape 105
www.csse.uwa.edu.au/~robyn/Visioncourse/colour/lecture/node5.html

Monitors

= monitors have nonlinear response to input

= characterize by gamma
= displayedintensity = a’ (maxIntensity)

= gamma correction
= displayedintensity =(a1/7) (maxIntensity)

= a (maxIntensity)

106

Alpha

= transparency
= (r,g,b,a)

= fraction we can see through
= C = 0C + (1-a)c,,

= compositing

107

Program 2: Terrain Navigation

= make colored terrain

= 100x100 grid
=« two triangles per grid cell

= face color varies randomly

108

Navigating

= two flying modes: absolute and relative
= absolute

= keyboard keys to increment/decrement

= X/y/z position of eye, lookat, up vectors
= relative

= mouse drags

= Incremental wrt current camera position

= forward/backward motion

= roll, pitch, and yaw angles

109

Hints: Viewing

= don't forget to flip y coordinate from mouse
= window system origin upper left
= OpenGL origin lower left

= all viewing transformations belong in
modelview matrix, not projection matrix

= project 1 template incorrect with this!

110

Hint: Incremental Motion

= Mmotion is wrt current camera coords

= maintaining cumulative angles wrt world coords
would be difficult

= computation in coord system used to draw previous
frame is simple
= OpenGL modelview matrix has the info!
« but multiplying by new matrix gives p’=Clp
= Yyou want to do p’=ICp

= trick:
= dump out modelview matrix
= wipe the stack with glidentity
= apply incremental update matrix
= apply current camera coord matrix

111

Demo

112

