

University of British Columbia CPSC 314 Computer Graphics May-June 2005

Tamara Munzner

Viewing, Projections I/II

Week 2, Tue May 17

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

- extra lab coverage with TAs
 - 12-2 Mondays, Wednesdays
 - for rest of term
 - just for answering questions, no presentations

2

Reading: Today

- FCG Chapter 6
- FCG Section 5.3.1
- RB rest of Chap Viewing
- RB rest of App Homogeneous Coords

Reading: Next Time

- FCG Section 2.11
- FCG Chap 3
 - except 3.8
- FCG Chap 17 Human Vision (pp 293-298)
- FCG Chap 18 Color pp 301-311
 - until Section 18.9 Tone Mapping

3

Textbook Errata

- list at http://www.cs.utah.edu/~shirley/fcg/errata
 - **p** 113
 - last matrix, last column denominators
 - D-a -> A-a
 - E-b -> B-b
 - F-c -> C-c
 - p 120
 - "Sometimes we will want to take the inverse of P" should be "M_p" instead of "P"

Correction²: Vector-Vector Subtraction

subtract: vector - vector = vector

 $\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 & v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix}$

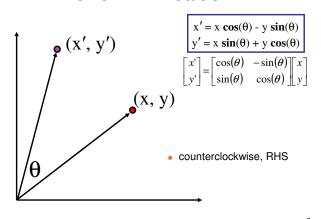
(3,2) - (6,4) = (-3,-2)

$$(2,5,1) - (3,1,-1) = (-1,42)$$

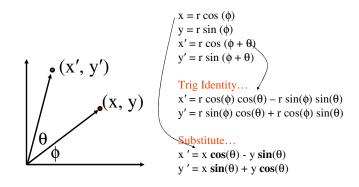
argument reversal

 $\mathbf{u} + (-\mathbf{v})$

Review: 2D Rotation

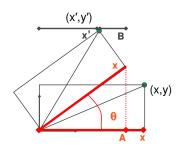


Review: 2D Rotation From Trig Identities



8

Review: 2D Rotation: Another Derivation



$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

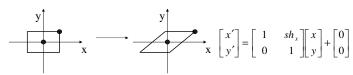
$$x' = A - B$$
$$A = x \cos \theta$$

9

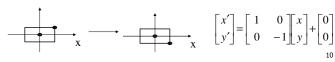
11

Review: Shear, Reflection

- shear along x axis
 - push points to right in proportion to height



- reflect across x axis
 - mirror

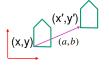


Review: 2D Transformations

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix



matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} y = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

translation multiplication matrix??

Review: Linear Transformations

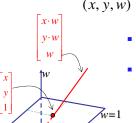
- linear transformations are combinations of
 - shear
 - scale
- $\begin{bmatrix} x' \end{bmatrix} = \begin{bmatrix} a & b \end{bmatrix}$
 - $b \mid x \mid$
- x' = ax + byy' = cx + dy

- rotatereflect
- properties of linear transformations
 - satisifes T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Homogeneous Coordinates Geometrically

homogeneous

cartesian



- $(x, y, w) \xrightarrow{/w} (\frac{x}{w}, \frac{y}{w})$
 - point in 2D cartesian + weight w = point P in 3D homog. coords
 - multiples of (x,y,w)
 - all homogeneous points on 3D line L represent same 2D cartesian point
 - homogenize to convert homog. 3D point to cartesian 2D point
 - divide by w to get (x/w, y/w, 1)
 - w=0 is direction; (0,0,0) is undefined

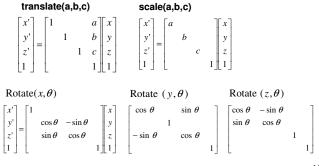
13

15

17

Review: 3D Homog Transformations

use 4x4 matrices for 3D transformations



14

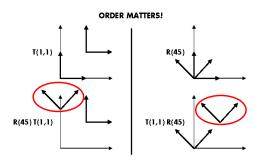
Review: Affine Transformations

- affine transforms are combinations of
 - linear transformations
 - translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Composing Transformations



Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta

16

Review: Composing Transforms

- order matters
 - 4x4 matrix multiplication not commutative!
- moving to origin
 - transformation of geometry into coordinate system where operation becomes simpler
 - perform operation
 - transform geometry back to original coordinate system

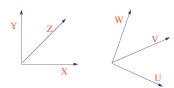
Review: Composing Transformations

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system
 - OpenGL updates current matrix with postmultiply
 - glTranslatef(2,3,0);
 - glRotatef(-90,0,0,1);
 - glVertexf(1,1,1);
 - specify vector last, in final coordinate system
 - first matrix to affect it is specified second-to-last

. .

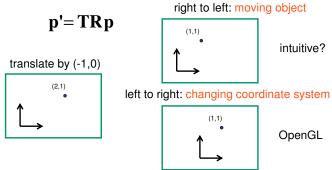
Review: Arbitrary Rotation



- problem:
 - given two orthonormal coordinate systems XYZ and UVW
 - find transformation from one to the other
- answer:
 - transformation matrix R whose columns are U,V,W:

$$R = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

Review: Interpreting Transformations

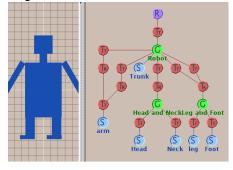


same relative position between object and basis vectors

20

Review: Transformation Hierarchies

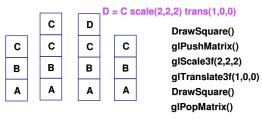
- transforms apply to graph nodes beneath them
- design structure so that object doesn't fall apart
- instancing



21

Review: Matrix Stacks

- OpenGL matrix calls postmultiply matrix M onto current matrix P, overwrite it to be PM
 - or can save intermediate states with stack
 - no need to compute inverse matrices all the time
 - modularize changes to pipeline state
 - avoids accumulation of numerical errors



22

24

Review: Transforming Normals

- shear, nonuniform scale makes normal nonperpendicular
 - need to use inverse transpose matrix instead

Review: Display Lists

- precompile/cache block of OpenGL code for reuse
 - efficiency
 - exact optimizations depend on driver
 - multiple instances of same object
 - static objects redrawn often
 - exploit hierarchical structure when possible
- set up list once with glNewList/glEndList
 - call multiple times

Viewing

Using Transformations

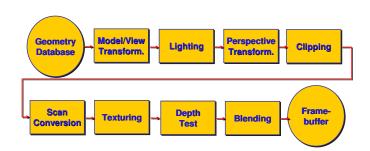
- three ways
 - modelling transforms
 - place objects within scene (shared world)
 - viewing transforms
 - place camera
 - projection transforms
 - change type of camera

2

Viewing and Projection

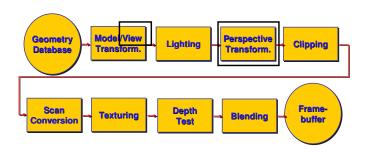
- need to get from 3D world to 2D image
- projection: geometric abstraction
 - what eyes or cameras do
- two pieces
 - viewing transform:
 - where is the camera, what is it pointing at?
 - perspective transform: 3D to 2D
 - flatten to image

Rendering Pipeline



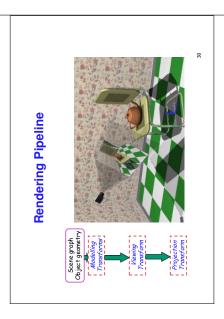
28

Rendering Pipeline

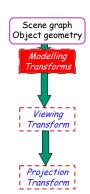


29

25



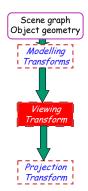
Rendering Pipeline



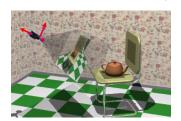
- result
 - all vertices of scene in shared3D world coordinate system

31

Rendering Pipeline

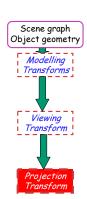


- result
 - scene vertices in 3D view (camera) coordinate system

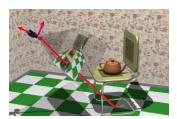


32

Rendering Pipeline



- result
 - 2D screen coordinates of clipped vertices



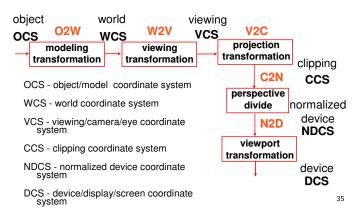
33

Coordinate Systems

- result of a transformation
- names
 - convenience
 - giraffe: neck, head, tail
 - standard conventions in graphics pipeline
 - object/modelling
 - world
 - camera/viewing/eye
 - screen/window
 - raster/device

34

Projective Rendering Pipeline



Basic Viewing

- starting spot OpenGL
 - camera at world origin
 - probably inside an object
 - y axis is up
 - looking down negative z axis
 - why? RHS with x horizontal, y vertical, z out of screen
- translate backward so scene is visible
 - move distance d = focal length
- can use rotate/translate/scale to move camera
 - demo: Nate Robins tutorial transformations

Viewing in Project 1

- where is camera in template code?
 - 5 units back, looking down -z axis

Convenient Camera Motion

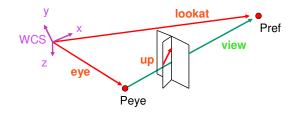
- rotate/translate/scale not intuitive
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

37

38

Convenient Camera Motion

- rotate/translate/scale not intuitive
- arbitrary viewing position
 - eye point, gaze/lookat direction, up vector

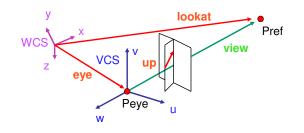


39

41

From World to View Coordinates: W2V

- translate eye to origin
- rotate view vector (lookat eye) to w axis
- rotate around w to bring up into vw-plane



40

OpenGL Viewing Transformation

gluLookAt (ex, ey, ez, lx, ly, lz, ux, uy, uz)

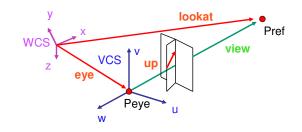
postmultiplies current matrix, so to be safe:

demo: Nate Robins tutorial projection

Deriving W2V Transformation

• translate eye to origin

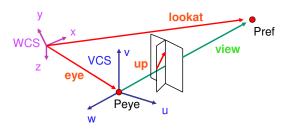
$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e_{X} \\ 0 & 1 & 0 & -e_{Y} \\ 0 & 0 & 1 & -e_{Z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Deriving W2V Transformation

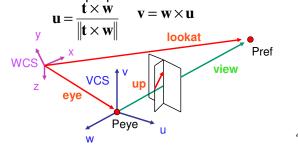
- rotate view vector (lookat eye) to w axis
 - w is just opposite of view/gaze vector g

$$\mathbf{w} = -\hat{\mathbf{g}} = -\frac{\mathbf{g}}{\|\mathbf{g}\|}$$



Deriving W2V Transformation

- rotate around w to bring up into vw-plane
 - u should be perpendicular to vw-plane, thus perpendicular to w and up vector t
 - v should be perpendicular to u and w



Deriving W2V Transformation

 rotate from WCS xyz into uvw coordinate system with matrix that has rows u, v, w

$$\mathbf{u} = \frac{\mathbf{t} \times \mathbf{w}}{\|\mathbf{t} \times \mathbf{w}\|} \quad \mathbf{v} = \mathbf{w} \times \mathbf{u} \quad \mathbf{w} = -\hat{\mathbf{g}} = -\frac{\mathbf{g}}{\|\mathbf{g}\|}$$

$$\mathbf{R} = \begin{vmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

- reminder: rotate from uvw to xyz coord sys with matrix M that has columns u,v,w
 - rotate from xyz coord sys to uvw coord sys with matrix M^T that has rows u,v,w

Deriving W2V Transformation

45

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e \\ 0 & 1 & 0 & -e \\ 0 & 0 & 1 & -e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

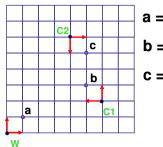
$$\mathbf{M}_{world->view} = \begin{bmatrix} u_x & u_y & u_z & 0 & 1 & 0 & 0 & -e_x \\ v_x & v_y & v_z & 0 & 0 & 1 & 0 & -e_y \\ w_x & w_y & w_z & 0 & 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u_x & u_y & u_z & -\mathbf{u} \bullet \mathbf{e} \\ v_x & v_y & v_z & -\mathbf{v} \bullet \mathbf{e} \\ w_x & w_y & w_z & -\mathbf{w} \bullet \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

46

Moving the Camera or the World?

- two equivalent operations
- move camera one way vs. move world other way
- example
- initial OpenGL camera: at origin, looking along -z axis
- create a unit square parallel to camera at z = -10
- translate in z by 3 possible in two ways
 - camera moves to z = -3
 - Note OpenGL models viewing in left-hand coordinates
 - camera stays put, but square moves to -7
- resulting image same either way
 - possible difference: are lights specified in world or view coordinates?

World vs. Camera Coordinates



$$a = (1,1)_W$$

$$b = (1,1)_{C1} = (3,2)_{W}$$

$$c = (1,1)_{C2} = (1,3)_{C1} = (4,4)_{W}$$

Projections I

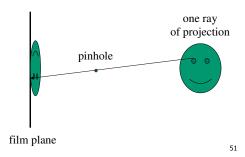
Pinhole Camera

- ingredients
- box
- film
- hole punch
- results
- pictures!

www.debevec.org/Pinhole

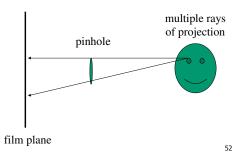
Pinhole Camera

• theoretical perfect pinhole



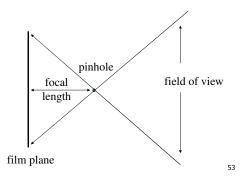
Pinhole Camera

non-zero sized hole



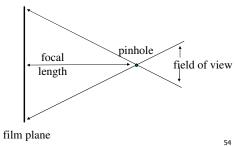
Pinhole Camera

• field of view and focal length



Pinhole Camera

• field of view and focal length



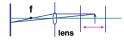
Real Cameras

- pinhole camera has small aperture (lens opening)
 - hard to get enough light to expose the film

real pinhole camera

- lens permits larger apertures
- lens permits changing distance to film plane without actually moving the film plane

camera



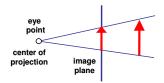
price to pay: limited depth of field

55

Graphics Cameras

• real pinhole camera: image inverted

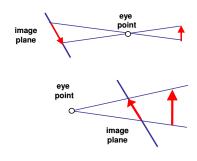
computer graphics camera: convenient equivalent



56

General Projection

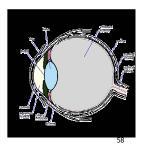
 image plane need not be perpendicular to view plane



57

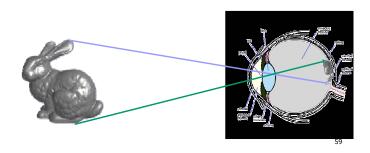
Perspective Projection

our camera must model perspective



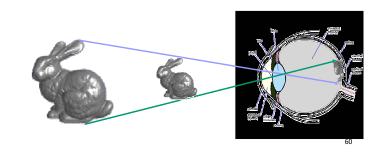
Perspective Projection

our camera must model perspective

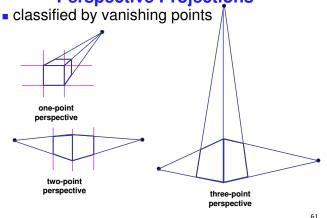


Perspective Projection

our camera must model perspective



Perspective Projections



Projective Transformations

- planar geometric projections
- planar: onto a plane
- geometric: using straight lines
- projections: 3D -> 2D
- aka projective mappings
- counterexamples?

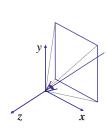
62

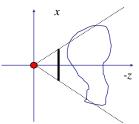
Projective Transformations

- properties
- lines mapped to lines and triangles to triangles
- parallel lines do NOT remain parallel
 - e.g. rails vanishing at infinity
- affine combinations are NOT preserved
 - e.g. center of a line does not map to center of projected line (perspective foreshortening)

Perspective Projection

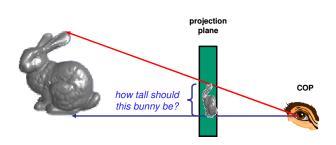
- project all geometry
 - through common center of projection (eye point)
 - onto an image plane





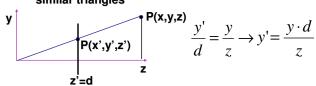
64

Perspective Projection



Basic Perspective Projection

similar triangles



$$\frac{x'}{d} = \frac{x}{z} \to x' = \frac{x \cdot d}{z}$$

$$\mathbf{but} \quad z' = d$$

- nonuniform foreshortening
- not affine

66

65

Perspective Projection

 desired result for a point [x, y, z, 1]^T projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}$$

$$x' = \frac{x \cdot d}{z} = \frac{x}{z/d}$$
, $y' = \frac{y \cdot d}{z} = \frac{y}{z/d}$, $z = d$

what could a matrix look like to do this?

Simple Perspective Projection Matrix

$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix}$$

Simple Perspective Projection Matrix

$$\begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \end{bmatrix} \text{ is homogenized version of } \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$
where $w = z/d$

69

Simple Perspective Projection Matrix

is homogenized version of
$$\begin{bmatrix} x \\ y \\ z \\ d \end{bmatrix}$$
where $w = z/d$

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

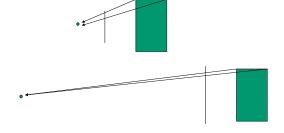
$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Perspective Projection

- expressible with 4x4 homogeneous matrix
 - use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same (x, y, d) on the projection plane
 - no way to retrieve the unique z values

Moving COP to Infinity

- as COP moves away, lines approach parallel
- when COP at infinity, orthographic view



71

Orthographic Camera Projection

- camera's back plane parallel to lens
- infinite focal length
- no perspective convergence
- just throw away z values

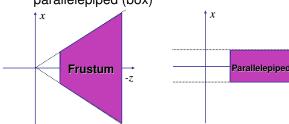
$$\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & x \\ 0 & 1 & 0 & 0 & y \\ 0 & 0 & 0 & 0 & z \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

73

Perspective to Orthographic

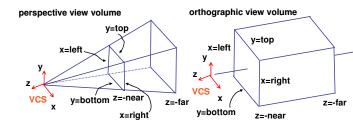
- transformation of space
- center of projection moves to infinity
- view volume transformed
 - from frustum (truncated pyramid) to parallelepiped (box)



73

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test



75

77

View Volume

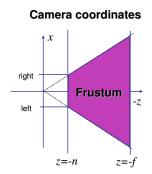
- convention
 - viewing frustum mapped to specific parallelepiped
 - Normalized Device Coordinates (NDC)
 - same as clipping coords
 - only objects inside the parallelepiped get rendered
 - which parallelepiped?
 - depends on rendering system

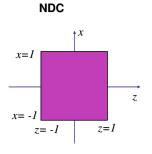
76

74

Normalized Device Coordinates

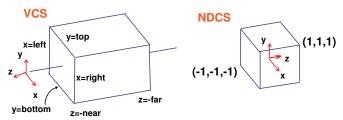
left/right x = +/-1, top/bottom y = +/-1, near/far z = +/-1





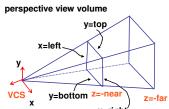
Understanding Z

- z axis flip changes coord system handedness
- RHS before projection (eye/view coords)
- LHS after projection (clip, norm device coords)



Understanding Z

near, far always positive in OpenGL calls glOrtho(left,right,bot,top,near,far); glFrustum(left,right,bot,top,near,far); glPerspective(fovy,aspect,near,far);





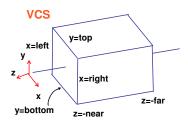
Understanding Z

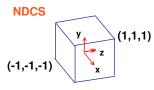
- why near and far plane?
 - near plane:
 - avoid singularity (division by zero, or very small numbers)
 - far plane:
 - store depth in fixed-point representation (integer), thus have to have fixed range of values (0...1)
 - avoid/reduce numerical precision artifacts for distant objects

80

Orthographic Derivation

scale, translate, reflect for new coord sys





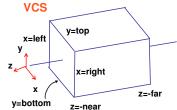
81

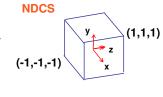
83

Orthographic Derivation

scale, translate, reflect for new coord sys

$$y' = a \cdot y + b$$
 $y = top \rightarrow y' = 1$
 $y = bot \rightarrow y' = -1$





82

Orthographic Derivation

scale, translate, reflect for new coord sys

$$y'=a \cdot y+b$$
 $y=top \rightarrow y'=1$ $1=a \cdot top+b$
 $y=bot \rightarrow y'=-1$ $-1=a \cdot bot+b$

$$b = 1 - a \cdot top, b = -1 - a \cdot bot$$

$$1 - a \cdot top = -1 - a \cdot bot$$

$$1 - (-1) = -a \cdot bot - (-a \cdot top)$$

$$2 = a(-bot + top)$$

$$b$$

$$a = \frac{2}{top - bot}$$

$$b$$

$$1 = \frac{2}{top - bot} top + b$$

$$b = 1 - \frac{2 \cdot top}{top - bot}$$

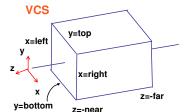
$$b = \frac{(top - bot) - 2 \cdot top}{top - bot}$$

$$b = \frac{-top - bot}{top - bot}$$

Orthographic Derivation

scale, translate, reflect for new coord sys

$$y' = a \cdot y + b$$
 $y = top \rightarrow y' = 1$
 $y = bot \rightarrow y' = -1$



 $a = \frac{2}{top - bot}$ $b = -\frac{top + bo}{top - bo}$

same idea for right/left, far/near

Orthographic Derivation

scale, translate, reflect for new coord sys

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix} P$$

Orthographic Derivation

scale, translate, reflect for new coord sys

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic Derivation

scale, translate, reflect for new coord sys

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic Derivation

scale, translate, reflect for new coord sys

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

87

88

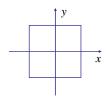
Orthographic OpenGL

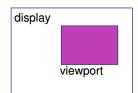
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left,right,bot,top,near,far);

Projections II

NDC to Viewport Transformation

- generate pixel coordinates
 - map x, y from range −1...1 (NDC) to pixel coordinates on the display
 - involves 2D scaling and translation

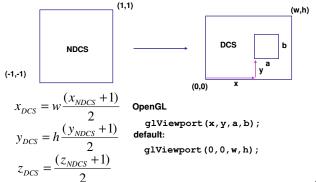




91

NDC to Viewport Transformation

2D scaling and translation

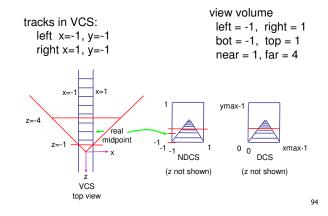


92

Origin Location

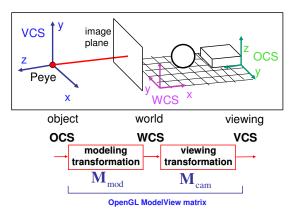
- yet more possibly confusing conventions
 - OpenGL: lower left
 - most window systems: upper left
- often have to flip your y coordinates
 - when interpreting mouse position

Perspective Example

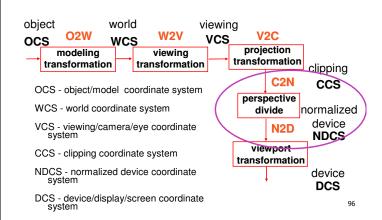


93

Viewing Transformation

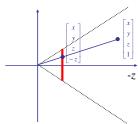


Projective Rendering Pipeline



Perspective Projection

- specific example
- assume image plane at z = -1
- a point $[x,y,z,1]^T$ projects to $[-x/z,-y/z,-z/z,1]^T \equiv [x,y,z,-z]^T$



97

Perspective Projection

$$T\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z \end{bmatrix} \equiv \begin{bmatrix} -x/z \\ -y/z \\ -1 \\ 1 \end{bmatrix}$$

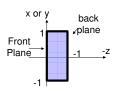
98

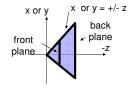
Canonical View Volumes

standardized viewing volume representation

orthographic orthogonal parallel

perspective





99

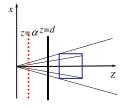
Why Canonical View Volumes?

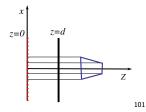
- permits standardization
 - clipping
 - easier to determine if an arbitrary point is enclosed in volume
 - consider clipping to six arbitrary planes of a viewing volume versus canonical view volume
 - rendering
 - projection and rasterization algorithms can be reused

100

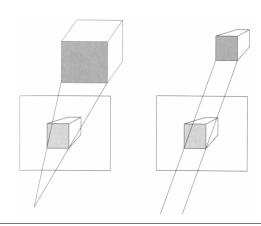
Projection Normalization

- one additional step of standardization
- warp perspective view volume to orthogonal view volume
 - render all scenes with orthographic projection!



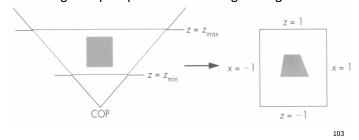


Predistortion



Perspective Normalization

- perspective viewing frustum transformed to cube
- orthographic rendering of cube produces same image as perspective rendering of original



Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/ AppletIndex.html#Transformationen

104

Perspective Warp

matrix formulation

$$(x, y, z, \mathbf{I}) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{d}{d - \alpha} & \frac{1}{d} \\ 0 & 0 & \frac{-\alpha \cdot d}{d - \alpha} & 0 \end{bmatrix} = \begin{pmatrix} x, y, \frac{(z - \alpha) \cdot d}{d - \alpha}, \frac{z}{d} \end{pmatrix}$$

$$(x_p, y_p, z_p) = \begin{pmatrix} \frac{x}{z/d}, \frac{y}{z/d}, \frac{d^2}{d - \alpha} (1 - \frac{\alpha}{z}) \end{pmatrix}$$
The source relative denth (third coordinate)

- preserves relative depth (third coordinate)
- what does $\alpha = 0$ mean?

Perspective Warp

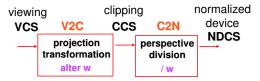
matrix formulation

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{d}{d - \alpha} & \frac{-\alpha \cdot d}{d - \alpha} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ \frac{z}{d} \end{bmatrix}$$

$$(x_p, y_p, z_p) = \left(\frac{x}{z/d}, \frac{y}{z/d}, \frac{d^2}{d - \alpha} \left(1 - \frac{\alpha}{z}\right)\right)$$

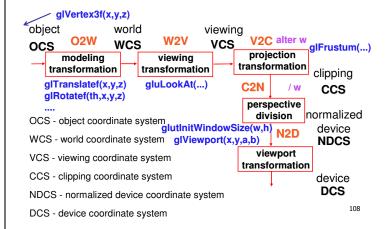
- preserves relative depth (third coordinate)
- what does $\alpha = 0$ mean?

Projection Normalization

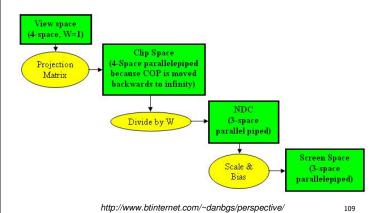


- distort such that orthographic projection of distorted objects is desired persp projection
 - separate division from standard matrix multiplies
 - clip after warp, before divide
 - division: normalization

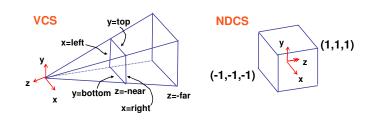
Projective Rendering Pipeline



Coordinate Systems



Perspective Derivation



110

Perspective Derivation

earlier:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

complete: shear, scale, projection-normalization

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

111

Perspective Derivation

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \begin{array}{l} x' = Ex + Az & x = left \ \rightarrow x'/w' = 1 \\ y' = Fy + Bz & x = right \ \rightarrow x'/w' = -1 \\ y' = Fy + Bz & y = top \ \rightarrow y'/w' = 1 \\ y = bottom \ \rightarrow y'/w' = -1 \\ z = -near \ \rightarrow z'/w' = 1 \\ z = -far \ \rightarrow z'/w' = 1 \\ z = -far \ \rightarrow z'/w' = -1 \\ y' = Fy + Bz, \quad \frac{y'}{w'} = \frac{Fy + Bz}{w'}, \quad 1 = \frac{Fy + Bz}{-z}, \\ 1 = F \frac{y}{-z} + B \frac{z}{-z}, \quad 1 = F \frac{y}{-z} - B, \quad 1 = F \frac{top}{-(-near)} - B, \\ 1 = F \frac{top}{near} - B$$

112

Perspective Derivation

- similarly for other 5 planes
- 6 planes, 6 unknowns

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Example

view volume

■ left = -1, right = 1

bot = -1, top = 1

near = 1, far = 4

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -5/3 & -8/3\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

113

Perspective Example

$$\begin{bmatrix} 1 \\ -1 \\ -5z_{VCS}/3 - 8/3 \\ -z_{VCS} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -5/3 - 8/3 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ z_{VCS} \\ 1 \end{bmatrix}$$

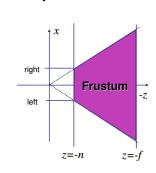
$$x_{NDCS} = -1/z_{VCS}$$

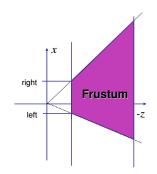
$$y_{NDCS} = 1/z_{VCS}$$

$$z_{NDCS} = \frac{5}{3} + \frac{8}{3z_{VCS}}$$

Asymmetric Frusta

- our formulation allows asymmetry
- why bother?





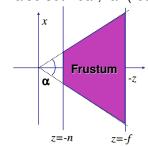
116

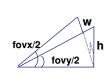
Simpler Formulation

- left, right, bottom, top, near, far
 - nonintuitive
 - often overkill
- look through window center
 - symmetric frustum
- constraints
 - left = -right, bottom = -top

Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
 - determines FOV in other direction
 - also set near, far (reasonably intuitive)





118

Perspective OpenGL

Demo: Frustum vs. FOV

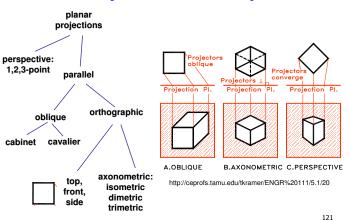
Nate Robins tutorial (take 2):

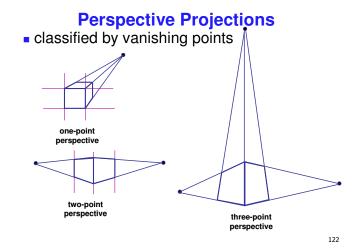
http://www.xmission.com/~nate/tutors.html

119

117

Projection Taxonomy



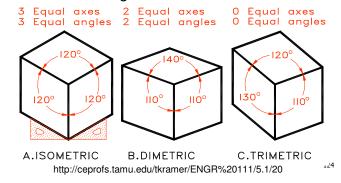


Parallel Projection

- projectors are all parallel
 - vs. perspective projectors that converge
 - orthographic: projectors perpendicular to projection plane
 - oblique: projectors not necessarily perpendicular to projection plane

Axonometric Projections

- projectors perpendicular to image plane
- select axis lengths



Oblique Projections

- projectors oblique to image plane
- select angle between front and z axis
 - lengths remain constant
- both have true front view
 - cavalier: distance true
 - cabinet: distance half

Demos

- Tuebingen applets from Frank Hanisch
 - http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/ AppletIndex.html#Transformationen