University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Viewing, Projections l/ll

Week 2, Tue May 17

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

News

= extra lab coverage with TAs
= 12-2 Mondays, Wednesdays
= for rest of term
= just for answering questions, no presentations

Reading: Today

FCG Chapter 6

FCG Section 5.3.1

RB rest of Chap Viewing

RB rest of App Homogeneous Coords

Reading: Next Time

= FCG Section 2.11
= FCG Chap 3
= except 3.8
= FCG Chap 17 Human Vision (pp 293-298)
= FCG Chap 18 Color pp 301-311
= until Section 18.9 Tone Mapping

Textbook Errata

» list at http://www.cs.utah.edu/~shirley/fcg/errata
= last matrix, last column denominators
=« D-a->A-a
= E-b->B-b
=« F-c->C-c
= "Sometimes we will want to take the inverse of
P" should be "M_p" instead of "P"

Vector-Vector Subtraction

= subtract: vector - vector = vector i, — v,
u—v=|u,—v,
Us; —Vy
(3,2)—(6,4) = (-3,-2)
(2,5.D)-(3,1,-1) = (-1,4)

u+(-v)

argument reversal

Review: 2D Rotation

&', y)

x' = x cos(0) - y sin(0)
y' = x sin(8) + y cos(8)

X)

SHe Sl

= counterclockwise, RHS

Review: 2D Rotation From Trig Identities

x =rcos (¢)
y=rsin (§)
x"=rcos (¢ +
y'=rsin (¢ + 0)

o (x',y")
Trig Identity...
(X, y) x" =1 cos(P) cos(0) —r sin(¢) sin(0)
y' =1 sin(¢) cos(8) + r cos(9) sin(0)
0 Substitute...
(1) X '=x cos(0) - y sin(0)

y '=xsin(0) + y cos(0)

Review: 2D Rotation: Another Derivation

X'=xcos@—ysin@

y'=xsin@+ ycos b

Review: Shear, Reflection

= shear along x axis
= push points to right in proportion to height

R et 7o M P M

= reflect across x axis
= mirror

N e == Vs PR M

Review: 2D Transformations

matrix multiplication matrix multiplication

Al

scaling matrix

Wit
(le) (a’h)

rotation matrix

vector addition

o

translation multiplication matrix??

SHea S

Ayl

|
)

11

Review: Linear Transformations

= linear transformations are combinations of
= shear

= scale x| la bjx x'=ax+by
= rotate v le d]y y'=cx+dy
= reflect

= properties of linear transformations
= satisifes T(sx+ty) = s T(X) + t T(y)
= Origin maps to origin
= lines map to lines
= parallel lines remain parallel
= ratios are preserved
= closed under composition

Review: Homogeneous Coordinates Geometrically

homogeneous cartesian
Xy
x,y,w) —— (—,—
X-w ww
yw = pointin 2D cartesian + weight w =
w point P in 3D homog. coords

= multiples of (x,y,w)

= all homogeneous points on 3D line L
represent same 2D cartesian point

=1 = homogenize to convert homog. 3D
point to cartesian 2D point

= divide by w to get (x/w, y/w, 1)
= w=0 is direction; (0,0,0) is undefined

13

Review: 3D Homog Transformations

= USe 4x4 matrices for 3D transformations

translate(a,b,c) scale(a,b,c)
x' 1 al x] x] [a T x
yi_| o1 by yi_| P ¥
4 1 ¢z 4 c z
1 111 1 It
Rotate(x, 8) Rotate (y,8) Rotate (z,6)
x' 1 x] cos 6 sin 6 1 cos @ —sinf
Y cosf —siné y 1 sin@ cos @
4 sind cosé z —sin 6 cos 6 1
1 1 1] 1] 1

Review: Affine Transformations

= affine transforms are combinations of
= linear transformations ,

. X a b c|x

= translations .
Yi=|d e [y
w 00 1w

= properties of affine transformations
= origin does not necessarily map to origin
= lines map to lines
= parallel lines remain parallel
= ratios are preserved
= closed under composition

Review: Composing Transformations

ORDER MATTERS!

T 1) Lh R({45)

R(45)T(1,1) 1(1,1) R(45)

\

Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta

O

Review: Composing Transforms

order matters
= 4x4 matrix multiplication not commutative!

= moving to origin

= transformation of geometry into coordinate
system where operation becomes simpler

= perform operation

= transform geometry back to original
coordinate system

Review: Composing Transformations
p'=TRp

= which direction to read?
= right to left
= interpret operations wrt fixed coordinates
= moving object
= left to right OpenGL pipeline ordering!
= interpret operations wrt local coordinates
= changing coordinate system

= OpenGL updates current matrix with postmultiply
= glTranslatef(2,3,0);
= glRotatef(-90,0,0,1);
= glVertexf(1,1,1);
= specify vector last, in final coordinate system
= first matrix to affect it is specified second-to-last 18

Review: Arbitrary Rotation

= problem:
= given two orthonormal coordinate systems XYZ and UVW
= find transformation from one to the other

= answer:
= transformation matrix R whose columns are U,V,W:

uX
R=lu, v, w
uZ

Review: Interpreting Transformations

right to left: moving object

p'=TRp o

T intuitive?
left to right: changing coordinate system
| ({8
T ’ OpenGL

= same relative position between object and
basis vectors "

translate by (-1,0)

@1
L)

Review: Transformation Hierarchies

» transforms apply to graph nodes beneath them
= design structure so that object doesn’t fall apart
= instancing

S S §
Head Neck leg Foot 21

Review: Matrix Stacks

= OpenGL matrix calls postmultiply matrix M onto current
matrix P, overwrite it to be PM
= Or can save intermediate states with stack
= Nno need to compute inverse matrices all the time
= modularize changes to pipeline state
= avoids accumulation of numerical errors
D = C scale(2,2,2) trans(1,0,0)

DrawSquare()

o
glPushMatrix()
n n n n glScale3f(2,2,2)
glTranslate3f(1,0,0)
n n n u DrawSquare()

glPopMatrix()
22

Review: Transforming Normals

= shear, nonuniform scale makes normal
nonperpendicular
= need to use inverse transpose matrix instead

23

Review: Display Lists

= precompile/cache block of OpenGL code for reuse
= efficiency
= exact optimizations depend on driver
= multiple instances of same object
= static objects redrawn often
= exploit hierarchical structure when possible
= set up list once with gINewList/glEndList
= call multiple times

24

Using Transformations

= three ways
= modelling transforms
= place objects within scene (shared world)
= viewing transforms

Viewing
= place camera
= projection transforms
= change type of camera
25
Viewing and Projection Rendering Pipeline

= need to get from 3D world to 2D image

= projection: geometric abstraction Geometry | | ModeWiew | | \ | |Perspective] | o
= what eyes or cameras do Ry B Transform.
= two pieces
= viewing transform:
= Where is the camera, what is it pointing at? Comaion |- Texturing [DePth L} gionging e

= perspective transform: 3D to 2D
= flatten to image

27

30

Rendering Pipeline

Geometry | _ Mw‘k:'ﬂ]. Lighting |} Perspectivell] oining

|
T

)

Database || Transform Transform. £
[

2

o

2

Scan Texturi Depth Frame- °
Conversion |71 TeXtUMNG = ‘poq [Blending buffer T
(]

1

R

-
I

Viewing 1
1 Transform !

’

Scene graph
At

Modelling

1 Transforms
I B 1
Projection 1
L Transform |

r
I

g
5
£
S
3
S
i
5
2,
by
o

29

Rendering Pipeline

= result
= all vertices of scene in shared

Scene graph
Object geometry

Moye///hg
Transforms

r-p>---1
, Viewing
1 Transform !

ro-> ===
\ Projection 1
| Transform

|
_______ a

31

Scene graph = result
Object geometry

Rendering Pipeline

= scene vertices in 3D view

" Modelling | :
! v (camera) coordinate system

| Transforms!

Viewing
Transform

ro-> ===
\ Projection
1 Transform

|
_______ a

32

Rendering Pipeline

Scene graph = result
Object geometry

e -, = 2D screen coordinates of
| Modeling | clipped vertices

r=—->=--=n
, Viewing
1 Transform !

Projection
Transform

33

Coordinate Systems

= result of a transformation
= names
= convenience
= giraffe: neck, head, tail
= standard conventions in graphics pipeline
= object/modelling
= world
= camera/viewing/eye
= screen/window
= raster/device

34

Projective Rendering Pipeline

object world viewing
ocs 92W wes W2V yes VvaC

modeling viewing projection

transformation transformation transformation clipping
OCS - object/model coordinate system CaN ccs
perspective

WGCS - world coordinate system divide |[normalized
VCS - viewing/camera/eye coordinate device

system 9 y N2D NDCS

- cliopi . viewport

CCS - clipping coordinate system transformation
NDCS - normalized device coordinate l device

system DCS

DCS - device/display/screen coordinate
system 3%

Basic Viewing

starting spot - OpenGL
= camera at world origin
= probably inside an object
= y axis is up
= looking down negative z axis
= why? RHS with x horizontal, y vertical, z out of screen
= translate backward so scene is visible
= move distance d = focal length
= can use rotate/translate/scale to move camera
= demo: Nate Robins tutorial transformations

36

Viewing in Project 1

= Where is camera in template code?
= 5 units back, looking down -z axis

37

Convenient Camera Motion

= rotate/translate/scale not intuitive
= arbitrary viewing position
= eye point, gaze/lookat direction, up vector

38

Convenient Camera Motion

= rotate/translate/scale not intuitive
= arbitrary viewing position
= eye point, gaze/lookat direction, up vector

y lookat ™

X Pref
WCS

N
[=
e

eye
Peye

39

From World to View Coordinates: W2V

= translate eye to origin
= rotate vector (lookat — eye) to w axis
= rotate around w to bring up into vw-plane

y lookat ™
Pref

40

OpenGL Viewing Transformation

gluLookAt (ex, ey, ez,1x,1ly, 1z,ux,uy,uz)

= postmultiplies current matrix, so to be safe:

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

glulLookAt (ex, ey, ez,1x,1ly, 1lz,ux,uy,uz)
// now ok to do model transformations

= demo: Nate Robins tutorial projection

41

Deriving W2V Transformation

1 0 0 —e
X
.. 01 0 —e
= translate eye to origin T
—e
Z
000 1
y lookat e
X Pref
WCS ,
, VeS| up
eye
Peye

w 42

Deriving W2V Transformation

= rotate vector (lookat — eye) to w axis
= W is just opposite of vector g
e
y lookat ™
X Pref
WCSs y
. VCS [up
eye
Peye
w Y u 43

Deriving W2V Transformation

= rotate around w to bring up into vw-plane

= U should be perpendicular to vw-plane, thus
perpendicular to w and up vector t

= vV should be perpendicular to u and w
tXW y=wxu

u
N

lookat)
Pref

44

Deriving W2V Transformation

= rotate from WCS xyz into uvw coordinate system
with matrix that has rows u, v, w

txXw g

u=—-— v=wXu w=—-g=—-
exwl el

v, v, v, 0

R= w, w, w0

0 0 0 1

= reminder: rotate from uvw to xyz coord sys with
matrix M that has columns u,v,w
= rotate from xyz coord sys to uvw coord sys with

matrix MT that has rows u,v,w N

Deriving W2V Transformation

u, u, u 0 1 0 0 —e
ve v, v. 0 01 0 —e
= M=RT R= w, w, w, 0 T= 00 1 —e
0 0 01 000 I
w, u, wu 0|1 0 0 —e | |u, u u -uee
v v, v, 001 0 —ef |v, v, v, -—vee
world—>view ~ we w, ow, 0[0 0 1 —e, a W, oW, ow, —wee
0 0 0 1J0 0 0 1 0 0 O 1

46

Moving the Camera or the World?

= two equivalent operations
= move camera one way vs. move world other way
= example
= initial OpenGL camera: at origin, looking along -z axis
= create a unit square parallel to camera at z = -10
= translate in z by 3 possible in two ways

= camera movestoz =-3

= Note OpenGL models viewing in left-hand coordinates

= camera stays put, but square moves to -7
= resulting image same either way

= possible difference: are lights specified in world or view

coordinates? .

World vs. Camera Coordinates

a= (1 ,1)W
¢ b=(1,1)¢;=(3,2)w
b ¢ =(1,1)c2= (1,3)c1 = (44w

48

Projections |

49

Pinhole Camera

= ingredients
= box
= film
= hole punch
m results www kodak.com
= pictures!

www.debevec.org/Pinhole

www.pinhole.org

Pinhole Camera

= theoretical perfect pinhole

one ray
of projection

pinhole

film plane o

Pinhole Camera

= hon-zero sized hole

multiple rays

ishol of projection
pinhole

film plane o

Pinhole Camera

= field of view and focal length

field of view

film plane o

Pinhole Camera

= field of view and focal length

field of view

film plane o

Real Cameras

= pinhole camera has small aperture (lens opening)
= hard to get enough light to expose the film
real pinhole camera
aperture
= lens permits larger apertures
= lens permits changing distance to film plane without
actually moving the film plane

camera | f le,_—z |

[Tew
lens

price to pay: limited depth of field

55

Graphics Cameras

= real pinhole camera: image inverted

eye
image point
plane

= computer graphics camera: convenient equivalent

eye
point

center of
projection image
plane

56

General Projection

= image plane need not be perpendicular to
view plane

eye

. oint
image p

plane

eye
point

image
plane

57

Perspective Projection

= our camera must model perspective

Perspective Projection

= our camera must model perspective

Perspective Projection

= our camera must model perspective

Perspective Projections
= classified by vanishing points

one-point
perspective

=

two-point
perspective three-point
perspective

61

Projective Transformations

= planar geometric projections
= planar: onto a plane

= geometric: using straight lines
= projections: 3D -> 2D

= aka projective mappings

= counterexamples?

62

Projective Transformations

= properties
= lines mapped to lines and triangles to triangles
= parallel lines do NOT remain parallel
= €.g. rails vanishing at infinity
= affine combinations are NOT preserved

= e.g. center of a line does not map to center of
projected line (perspective foreshortening)

63

Perspective Projection

= project all geometry
= through common center of projection (eye point)
= onto an image plane

64

Perspective Projection

projection
plane

how tall should
this bunny be?

65

Basic Perspective Projection
similar triangles

Py yod
/m e

[z
z’=d

y

X' x . x-d \
—=—— x'==— but z'=d
d z z

= nonuniform foreshortening

= not affine

66

Perspective Projection

= desired result for a point [x, y, z, 1]" projected
onto the view plane:

X_x y_y
d z d
X4 x o yd v oy
z z/d z z/d

= what could a matrix look like to do this?

67

Simple Perspective Projection Matrix

_x
z/ld

Y
z/d

d

68

Simple Perspective Projection Matrix

[x T X
2/d is homogenized version of
y Z
z/d| wherew=2z/d z/ld
d
L

69

Simple Perspective Projection Matrix

X X
z/d is homogenized version of
Y X
z/d | wherew = z/d z/d
d
L i X 1 0 0 Ofx
y | |01 0 Ofy
z |00 1 0fz
z/d 0 0 1/d 01

70

Perspective Projection

= expressible with 4x4 homogeneous matrix
= use previously untouched bottom row
= perspective projection is irreversible

= many 3D points can be mapped to same
(x, y, d) on the projection plane

= NO way to retrieve the unique z values

71

Moving COP to Infinity

= as COP moves away, lines approach parallel
= when COP at infinity, orthographic view

ol

72

Orthographic Camera Projection

= camera’s back plane

parallel to lens Xl X

= infinite focal length Yo 7Y

= No perspective %] 10

convergence - - _
X, 1 00 Ofx

= just throw away z values yp 0100 y
z,| 1000 0]z
1000 1]1]

73

Perspective to Orthographic

= transformation of space
= center of projection moves to infinity
= view volume transformed

= from frustum (truncated pyramid) to
parallelepiped (box)

74

View Volumes

= specifies field-of-view, used for clipping
= restricts domain of z stored for visibility test

perspective view volume orthographic view volume

VCS y=bottom Z=-near
x=rtight y=bottom ,_ hear

75

View Volume

= convention
= viewing frustum mapped to specific
parallelepiped
= Normalized Device Coordinates (NDC)
= same as clipping coords
= only objects inside the parallelepiped get
rendered
= which parallelepiped?
= depends on rendering system

76

Normalized Device Coordinates

left/right x =+/- 1, top/bottom y =+/- 1, near/far z =+/- 1

Camera coordinates NDC

x=1

x= -1
z=-1 z=1

z=-n z=-f

77

Understanding Z

= z axis flip changes coord system handedness
= RHS before projection (eye/view coords)
= LHS after projection (clip, norm device coords)

VCS NDCS
x=left (1 !1 a1)
y z
/K EEEIN I
X

y=bottom 2=-near

78

Understanding Z

near, far always positive in OpenGL calls
glOrtho(left,right,bot,top,near,far);
glFrustum(left,right,bot,top,near,far);
glPerspective(fovy,aspect,near,far);

perspective view volume orthographic view volume

VCs
y=b°u°m Z=-near . X / z=-far

x=right y=bottom

Z=-near

79

Understanding Z

= why near and far plane?
= near plane:

= avoid singularity (division by zero, or very
small numbers)

= far plane:

= store depth in fixed-point representation
(integer), thus have to have fixed range of
values (0...1)

= avoid/reduce numerical precision artifacts for
distant objects

80

Orthographic Derivation

= scale, translate, reflect for new coord sys

Orthographic Derivation

= scale, translate, reflect for new coord sys

y=top —> y'=1
y=a-y+b
y=bot > y'=-1
NDCS vecs NDCS
(151’1) x=left (1!1’1)
z y r4
('1 !'1 5'1) X ZL/K x=right ('1 5'1 5'1) X
X
y=bottom ,_ ... y=bottom ,_ hoqy
81 82
Orthographic Derivation Orthographic Derivation
= scale, translate, reflect for new coord sys = scale, translate, reflect for new coord sys
y=top = y'=1 l=a-top+b y=top = y'=1
y'=a-y+b ' y'=a-y+b .
y=bot > y'=—1 —1=a-bot+b y=bot - y'=—1
vecs 0= 2
b=1-a-top,b=~1-a-bot = op—bor P g top —bot
—qa- =—1—qa- x=left

1-a-top=—1-a-bot A 2-top y top + bot
1—(=1)=—a-bot —(~a-top) top —bot Z‘/K b:_ﬁ

2 = a(—bot +top) p = (top —bot)-2-top op —bo

—bot z=-far
g 2 _mplilz; » 0 y=bottom ,_
top —bot b=—"F—" same idea for right/left, far/near

top —bot -

84

Orthographic Derivation

= scale, translate, reflect for new coord sys

2

0

right — left

0 _ right +left 1
right —left
0 _top +bot
top —bot
-2 far +near
far —near - far —near
0 1

85

Orthographic Derivation

= scale, translate, reflect for new coord sys

2 0 0 _ right +left 1
right —left right —left
0 2 0 _top+bot
top —bot top—bot |p
0 0 -2 _ far +near
far —near far —near
0 0 0 1]

86

Orthographic Derivation

= scale, translate, reflect for new coord sys

Orthographic Derivation

= scale, translate, reflect for new coord sys

2 0 right +left | 2 0 0 _right +left |
right —left right —left right —left right —left
0 2 0 _ top+bot 0 2 _top+bot
p= top —bot top—bot |p p= top —bot top—bot |p
0 0 -2 | far +near 0 0 |:]2 _ far +near
far —near far —near far —near far —near
L 0 0 0 1 | 0 0 0 1]
87 88
Orthographic OpenGL

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glOortho (left, right, bot, top, near, far);

89

Projections Il

90

NDC to Viewport Transformation

= generate pixel coordinates

NDC to Viewport Transformation

= 2D scaling and translation
(a1

= map x, y from range —1...1 (NDC) to pixel (wh)
coordinates on the display
= involves 2D scaling and translation NDCS pes b
y 171 Iya
display (0,0) X
Xpcs = wM OpenGL
2 . .
* viewport Vpes = hi(y”’”cs +D delela:::lewport Geryr2b)i
P bes 2 glviewport (0,0,w,h);
_ (Zypes D
Zpcs = T
91 92
Origin Location Perspective Example
= yet more possibly confusing conventions . view volume
= OpenGL: lower left "ag;ts IQ=V10§= 1 Ik?:t - -_11 : ;i?;t— =11
= most window systems: upper left right x=1, y=-1 near = 1, far= 4

= often have to flip your y coordinates
= when interpreting mouse position

93

x=1

1 ymax-1
«/real /__/é
midpoint 1

z=1 4 A 1 09 xmax-1
> x
NDCS DCS

(z not shown) (z not shown)

x=-1

z
VCS
top vi
op view o

Viewing Transformation

object world viewing
oCs WCS VCS
__,| modeling | viewing
transformation transformation
Mmod M

cam
| J

OpenGL ModelView matrix
95

Projective Rendering Pipeline

object world viewing
ocCs o2w wes wav VCS VZC
_| modeling | [viewing projection
transformation transformation transformation| . ing
OCS - object/model coordinate system C2N CCs
perspective
WCS - world coordinate system divide |normalized
VCS - viewing/camera/eye coordinate device
Systom g Y N2D NDC
CCS - clipping coordinate system W
transformation
NDCSt- normalized device coordinate device
system DCS

DCS - device/display/screen coordinate %
system

Perspective Projection

= specific example

= assume image plane at z=-1

= a point [x,y,z, 117 projects to [-x/z,-y/z,-2/z, 11" =
[x,y,2,-2]"

97

Perspective Projection

X 1 0 0 Of]|x X —-x/z
T Yl 01 0 O Y|y —-y/z

Z 00 1 O0f|z z -1

1 0 O@O 1 -z 1

__,| projection | perspective
transformation division
alter w Iw

_—

98

Canonical View Volumes

= standardized viewing volume representation

orthographic perspective
orthogonal
parallel
xory X ory X ory=+/-z
back back
front «~ plane
plai 2

99

Why Canonical View Volumes?

= permits standardization
= clipping

= easier to determine if an arbitrary point is
enclosed in volume

= consider clipping to six arbitrary planes of a
viewing volume versus canonical view volume

= rendering

= projection and rasterization algorithms can be
reused

100

Projection Normalization

= one additional step of standardization

= warp perspective view volume to orthogonal
view volume

= render all scenes with orthographic projection!

z=0 z=d

/

o

\

101

Predistortion

102

= perspective viewing frustum transformed to

cube

Perspective Normalization

= orthographic rendering of cube produces same

AN

image as perspective rendering of original
/ 7= 1

QZ: Z‘Il

x=—1

103

Demos

= Tuebingen applets from Frank Hanisch
= http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/

Appletindex.html#Transformationen

104

Perspective Warp

= matrix formulation

10 0 0
Va1 G
—a)-
G009 g :(’”’ d-a ’5]
00 %, i
d-a (x,y,z)z(i,i,d
Pt \zld zld d-a

= what does @ =0mean?

-

= preserves relative depth (third coordinate)

Perspective Warp

= matrix formulation

10 O 0 X
01 0 0 Ix y
00 d -ad Y| (z—o)-d
d-a d-a|z d—a
oo L o M| =z
d d
(x,,y,.2,)=

= what does ¢ =0 mean?

(LL & (1_£‘D
2/d zld d—a\ z

= preserves relative depth (third coordinate)

= distort such that orthographic projection of

viewing clipping normglized
VCS v2C CCS C2N device
__.| projection || perspective _N.DCS
transformation division
alterw /w

Projection Normalization

distorted objects is desired persp projection

= separate division from standard matrix
multiplies

= Clip after warp, before divide
= division: normalization

107

Projective Rendering Pipeline

glVertex3f(x,y,z)

object world viewing
It
ocSs 02w wes W2V VCS VZF’ a. erw glFrustum(...)
_| modeling viewing projection
transformation transformation transformation clipping
glTranslatef(x,y,z) gluLookAt(...) C2N /w cecS
glRotatef(th,x,y,z) -
perspective lized
)) division |normalize
OCS - object coordinate syStenélutlnitWindowSize(w,h 2D device
WGCS - world coordinate system glViewport(x,y,a,b) NDCS
VCS - viewing coordinate system viewport_
transformation
CCS - clipping coordinate system device
DCS

NDCS - normalized device coordinate system

DCS - device coordinate system

108

Coordinate Systems

Projection
Idatrix

Divide by W

Scale &
Buias

http://www.btinternet.com/~danbgs/perspective/ 109

Perspective Derivation

NDCS

y=bottom Z=-near
x=right

110

Perspective Derivation

Perspective Derivation

x=left = x'/Iw'=1

¥ [t 0 0o ofx x| [E 0 A 0]« x'= Ex+ Az '
earlier: vl lo1 o ofy v lo F B oy y'=Fy+ Bz x=right > x'/w'=-1
7100 1 oz Z17lo o ¢ Dz = Co4 D y=top — y'lw'=1
w| [0 0 1/d 0]1 W' 0 0 -1 01 : y=bottom — y'/w'=—1
w=-z
¢ z=-near — 7'/w'=1
complete: shear, scale, projection-normalization z=—far > z'/w'=-1
y=Fy+B, L-fyrBe oy FyvBe o FydBe
X [E 0 A 0fx w' w' w' -z
y|_|0 F B 0y Y Z Y B top
27 lo 0o ¢ bz I_F—Z+B—z’ I_F—z_B’ I_F—(Tear)_B’
wl [0 0 -1 0]1 top
1=F—"-B
near
111 112
Perspective Derivation Perspective Example
= similarly for other 5 planes ,
view volume
= 6 planes, 6 unknowns w left=-1, right = 1
= bot=-1, top=1
" 2n r+l] = near=1,far=4
— 0 —_— 0
r—l r—1 2o o 1o 0 0
2n t+b r=l r-l
o — — 0 0o 2 by 01 0 0
t—>b t—>b -b t-b
—(f+n) -2fn o o Z—U+m -2/ 10 0 -5/3 -8/3
0 0 f-n f-n
f-n -n o 0 -l 0 00 -1 0
00 -1 0 |

113

114

Perspective Example

1 1 1
-1 3 1 -1
—52,0s/3-813| ~5/3 —8/3 || zyes
= Zycs -1 1
\ Xypes = 1 Zyes
I'w Yapes =1 Zyes
5 8
me_§+3%m

115

Asymmetric Frusta

= our formulation allows asymmetry
= why bother?

116

Simpler Formulation

= left, right, bottom, top, near, far
= nonintuitive
= often overkill
= look through window center
= symmetric frustum
= constraints
= left = -right, bottom = -top

117

Field-of-View Formulation

= FOV in one direction + aspect ratio (w/h)
= determines FOV in other direction
= also set near, far (reasonably intuitive)

i=-n z=—f

118

Perspective OpenGL

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();

glFrustum(left, right, bot, top, near, far);

or
glPerspective (fovy, aspect, near, far) ;

119

Demo: Frustum vs. FOV

= Nate Robins tutorial (take 2):
= http://www.xmission.com/~nate/tutors.html

120

Projection Taxonomy

planar
projections

perspective: / ZL‘.’ﬂ;SLNS
1,2,3-point parallel \ Sgije:r‘g"?
\ Projectors 1 '

Projechon F'I Prolechon F'\ Projection PI.

@ |||

B.AXONOMETRIC C.PERSPECTIVE

oblique orthographic ‘

N / \
cabinet cavalier

axonometric:

_ top, R ri
D front, 'Z?m“; ric
| side imetric

trimetric

A.OBLIQUE

http:/ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

121

Perspective Projections
= classified by vanishing points

one-point
perspective

=

two-point
perspective

three-point
perspective

122

Parallel Projection

= projectors are all parallel
= VS. perspective projectors that converge
= orthographic: projectors perpendicular to
projection plane
= oblique: projectors not necessarily
perpendicular to projection plane

Orthographic Oblique

Axonometric Projections

= projectors perpendicular to image plane
= select axis lengths

3 Equal axes 2 Equal axes O Equal axes

3 Equal angles 2 Equal angles O Equal angles

e
L7

A.ISOMETRIC B.DIMETRIC C.TRIMETRIC
http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20

Oblique Projections

= projectors oblique to image plane
= select angle between front and z axis
= lengths remain constant
= both have true front view
= cavalier: distance true
= cabinet: distance half

d/2
v y
d
d {a
\06
X z x
z cabinet

cavalier
125

Demos

= Tuebingen applets from Frank Hanisch

= http://www.gris.uni-tuebingen.de/projects/grdev/doc/html/etc/
Appletindex.html#Transformationen

126

