University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Transformations |, Il, Il

Week 1, Thu May 12

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Reading

FCG Chap 5 (except 5.1.6, 5.3.1)
FCG pages 224-225
RB Chap Viewing:

= Sect. Viewing and Modeling Transforms until Viewing
Transformations

» Sect. Examples of Composing Several Transformations
through Building an Articulated Robot Arm

RB Appendix Homogeneous Coordinates and
Transformation Matrices

« until Perspective Projection
RB Chapter Display Lists
=« (Iit's short)

Textbook Errata

m list at http://www.cs.utah.edu/~shirley/fcg/errata
= math review: also p 48
« ax(bxc)l=(axb)xc
« transforms: p 91
= should halve x (not y) in Fig 5.10
« transforms: p 106
= second line of matrices: [x,, y,, 1]

Vector-Vector Subtraction

= subtract: vector - vector = vector i, — v,

u—-v=|u,—v,

Uz — V3

(3.2)—(6,4) = (-3,-2)
2,5.1)—3.,1,—-1) = (-12,0)

u+(—v)

argument reversal

Vector-Vector Multiplication

= multiply: vector * vector = scalar

= dot product, aka inner product uev
e _v1_

u, |® v, | = (u, v,)+ (v,)+ (s % v,)

u3 _V3_

o | uev= HuHHVH cos @
= geometric interpretation

= lengths, angles u
= can find angle between two 2
vectors

A\

Matrix Multiplication

= can only multiply

number of left = number of right
= legal _ __h]
a b c || l
j ok
¢ | 8
. [m
= undefined o -
a b c |- -
I
e
/8 ik
o p q)

Matrices and Linear Systems

= linear system of n equations, n unknowns
3Ix+T7y+2z=4
2x—4y—-3z=-1
Sx+2y+z=1

= matrix form Ax=b

3 7 2 |x 4
2 -4 -3|y
5 2 1 z| ([T

ll
I
ek

Review: Rendering Pipeline

Geomers || Modetow

Database Transform. Lighting

Scan

Conversion || TeXturing Blending

Scan Conversion

Perspective
Transform.

Model/View
Transform.

Geometry
Database

Lighting — Clipping

Scan
Conversion

= ScCan conversion

= turn 2D drawing primitives (lines,
polygons etc.) into individual pixels
(discretizing/sampling)

= Interpolate color across primitive
= generate discrete fragments 9

Blending

Model/View
Transform.

Geometry
Database

Perspective
Transform.

Lighting Clipping

., Scan : Depth :
Conversion Texturing Test Blending
= blendin g

= final image: write fragments to pixels
« draw from farthest to nearest
= no blending — replace previous color

= blending: combine new & old values with arithmetic

operations
10

Framebuffer

Model/View
Transform.

Perspective
Transform.

Geometry
Database

Lighting Clipping

Scan

| Conversion Texturing

Blending

= framebuffer
= video memory on graphics board that holds image
=« double-buffering: two separate buffers

« draw into one while displaying other, then swap

« allows smooth animation, instead of flickering
11

Review: OpenGL

= pipeline processing, set state as needed

void display ()
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER BIT);
glColor3£(0.0, 1.0, 0.0);
glBegin (GL_POLYGON) ;
glVertex3f(0.25, 0.25, -0.5);
glVertex3f£(0.75, 0.25, -0.5);
glVertex3f£(0.75, 0.75, -0.5);
glVertex3f(0.25, 0.75, -0.5);
glEnd() ;
glFlush () ;

Review: Event-Driven Programming

= main loop not under your control
= VS. procedural
= control flow through event callbacks
= redraw the window now
= key was pressed
= Mouse moved

= callback functions called from main loop
when events occur

= mouse/keyboard state setting vs. redrawing

13

Transformations

14

Overview

= 2D Transformations

= Homogeneous Coordinates
= 3D Transformations

= Composing Transformations
= [ransformation Hierarchies
= Display Lists

= [ransforming Normals

= Assignments

15

Transformations
= transforming an object = transforming all its
points

= transforming a polygon = transforming its
vertices

2 @ » A

16

Matrix Representation

= represent 2D transformation with matrix

= multiply matrix by column vector <{—
apply transformation to point

x| |a b x X'=ax+by
y':_c d|y y'=cx+dy
o transfgrrrlatio_ns cor_npined t_>¥ multi_pl_icailtion
x| |a b|ld elh i|x
Y Le dlf gl kv

= matrices are efficient, convenient way to represent
sequence of transformations!

17

Scaling

= scaling a coordinate means multiplying each

of its components by a scalar

= Uniform scaling means this scalar is the same
for all components:

P\

—

X 2

PN

18

Scaling

= non-uniform scaling: different scalars per
component:

I

Y x0.5

= how can we represent this in matrix form?

19

Scaling

= scaling operation:

= Or, In matrix form:

H_J
scaling matrix

.
0 by

20

2D Rotation

(x,y')

= counterclockwise

= RHS

(X, ¥)

X" =x ¢c0os(0) - y sin(0)
y' = x sin(0) + y cos(0)

>

21

2D Rotation From Trig Identities

X =71 COs ()

y =1 sin (0)
x'=r1cos (¢ +
y' =1 sin (¢ + 0)

° (X’a y’)
Trig Identity...
(X y) X" =1 cos(d) cos(0) —r sin(¢) sin(O)
’ y' = r sin() cos(0) + r cos(0) sin()
bstitute...
(I) X "=x cos(09) - y sin(0)

y "=xsin(0) + y cos(9)

22

2D Rotation Matrix

= easy to capture in matrix form:

x| [cos(@) —sin(@)] x
y' _sin(H) cos(&’) y

= even though sin(q) and cos(q) are nonlinear
functions of q,

= X' IS a linear combination of x and y
= y' IS a linear combination of x and y

2D Rotation: Another Derivation

o xX'=xcosf@—ysinf
(X,y) “ o
y'=xsmé+ ycosb

24

2D Rotation: Another Derivation

xX'=xcosf@—ysinf

! !

(x,y’)

y'=xsmé+ ycosb

25

2D Rotation: Another Derivation

X'=xcosf@—ysinf

(X',y') ///

y'=xsmméf+ ycosb

26

2D Rotation: Another Derivation

o xX'=xcosf@—ysinf
(X',y) o
y'=xsmé+ ycosb

27

2D Rotation: Another Derivation

xX'=xcosf@—ysinf

y'=xsmé+ ycosb

28

2D Rotation: Another Derivation

xX'=xcosf@—ysinf

y'=xsmé+ ycosb

29

Shear

= shear along x axis

= push points to right in proportion to height

? ?

77

X

Y

|

30

Shear

= shear along x axis
= push points to right in proportion to height

x 1 sh | x 0

X

= +

Reflection

s reflect across x axis

= mirror 21 1?2 21 x
’ — +
oy _? ?__y_
@

Reflection

s reflect across x axis
= mirror | X’ 1 0 |x

Y] L0 —1]y

2D Translation

34

|

x}
y'

2D Translation

a O x

0O by
\ﬂ—’
scaling matrix

sin(@) cos(6)

| 7
hd

rotation matrix

{cos(e) —sin(@)}{

35

2D Translation

vector addition

(x,y’) |
X a . X+a . X
[NEBENMEH

matrix multiplication matrix multiplication

x| la Ofx {x}_{cos(@) —sin(@)}{x}

y' 1o b y y' sin(@) cos(@) || y
H_I | ~ J

scaling matrix rotation matrix

36

2D Translation

(x,y’)
‘ (X,y) (a,b)

matrix multiplication

X' _|a O x

v 10 by
H_I
scaling matrix

a

X

o

-
——

translation multiplication matrix??

vector addition

{x
y
matrix multiplication

cos(8) —sin(@)}{x}

sin(6)

Lo

cos(8)

w4

Y

~
rotation matrix

37

Linear Transformations

s linear transformations are combinations of

= Shear - 1 b_
= scale X a X

= rotate y| |c diy
= reflect) -

= properties of linear transformations
« satisifes T(sx+ty) = s T(X) + t T(y)

= Origin maps to origin

« lines map to lines

« parallel lines remain parallel
= ratios are preserved

« closed under composition

xX'=ax+by
y'=cx+dy

38

Challenge

= matrix multiplication
« for everything except translation

= how to do everything with multiplication?
= then just do composition, no special cases

= homogeneous coordinates trick
= represent 2D coordinates (x,y) with 3-vector (x,y,1)

39

Homogeneous Coordinates

s our 2D transformation matrices are now 3x3:

[cos(d) —sin(8) O]
Rotation=| sin(6) cos(@) O Scale =
0 0 1

S O Q
o S O
_ O O

1 0T
Translation=|0 1 T, | = use rightmost column
0 0 1

1 0 allx| [x*1+a*1] [x+a
O 1 bly|=|y*l+b*l|=|y+b
_O 0 1] | 1 11

Homogeneous Coordinates Geometrically

= pointin 2D cartesian

41

Homogeneous Coordinates Geometrically

homogeneous cartesian
A" Xy
)) (X, vy, W) (_ s
X W w w

= point in 2D cartesian + weight w =
point P in 3D homog. coords

= multiples of (x,y,w)
« formalineLin 3D

= all homogeneous points on L
represent same 2D cartesian point

« example: (2,2,1) = (4,4,2) = (1,1,0.5)

42

Homogeneous Coordinates Geometrically

homogeneous cartesian
A" Xy
(X, Y, W) (_ s
| w w

= homogenize to convert homog. 3D
point to cartesian 2D point:

= divide by w to get (x/w, y/w, 1)

= projects line to point onto w=1 plane
= when w=0, consider it as direction

= points at infinity

=« these points cannot be homogenized

= lies on x-y plane

= (0,0,0) is undefined

43

Homogeneous Coordinates Summary

= may seem unintuitive, but they make
graphics operations much easier

s allow all linear transformations to be
expressed through matrix multiplication

x Use 4x4 matrices for 3D transformations

44

Affine Transformations

s affine transforms are combinations of
= linear transformations - T

_ X a b

= translations '
y|=|d e
w 0 O

= properties of affine transformations
= Origin does not necessarily map to origin
« lines map to lines
= parallel lines remain parallel
= ratios are preserved
« closed under composition

45

3D Rotation About Z Axis

X'=xcosf—ysinf
y'=xsmé+ ycosb
7=z

cos@ —sind Ol x|
Ofy
0 0 Ol z

0 0 0 1|1
= general OpenGL command
glRotatef(angle,x,y,z);

= rotate in z
glRotatef(angle,0,0,1);

X' 0
y' sinf@ coséd O
z 1

_1 -

46

3D Rotationin X, Y

around x axis: dlRotatef(angle,1,0,0);

x| [1 0 0 O0fx]
y 0 cos@ —sinf@ Ofy
4 0 sin@ cosf@ O}z
11 10 O 0 1|1

around y axis: dlRotatef(angle,0,1,0);

- cos6 sin@ O]

x| 0) x|
y1 1 0 1 O Oy
7| |—-sin@ 0 cos® O]z
11 [O 0O O 1|1

3D Scaling

glScalef(a,b,c);

48

| Oz

3D Translation

X' I 0 0 afx
y|1 10 1.0 by
Q 2110 01 ¢z
1] 0 0 0 1]1]

a,b,c >

glTranslatef(a,b,c);

49

3D Shear

I sy sz

s Shear in x N

xshear(sy,sz) =

—_ o O O

0 1
0 0 O

= sheariny

yshear(sx,sz) =

-
S O = O
— q
- o o O

= shearin z 0 1

zshear(sx,sy) =
sX Sy

o = O O
—_ o O O

Summary: Transformations

translate(a,b,c)

x' 1

y'
4 1
_1 -

Rotate(x, 0)
1

cos@ —sin@

sin@ cosé@

x’
y!
Z!

_1 -

scale(a,b,c)
x'] [a

y' B b

Z' - C
_1 _ |

Rotate (y,8)

cos @ sin @

—sin & cos @

—_ N < =

Rotate (z,60)

cos@d —sin @

sin@ cos @

51

Undoing Transformations: Inverses

T(X,)’,Z)_l — T(—x,—y,—z)
T(x,y,z) T(—x,—y,—z) =1

R(z,60)"'= R(z,—6) =R"(z,6) (Ris orthogonal)
R(z,0) R(z,—6) = 1

1 1 1
S(sx,sy,sz)" = S(—,—,—)

SX Sy SZ
S(sx,5y,852)S(! , ! : !) =1

SX Sy SZ

52

Composing Transformations

53

Composing Transformations

s translation

Tl1=T(dxdy1) =

T2 =T(dx2dy2) =

P'=T2eP'=T2e¢[T1eP|=[T2eT1]® P,where

T2eT1=

1

1

dx1+dxz_
dyl + dyz

so translations add

54

Composing Transformations

= scaling

S2e 51 =

SX1+ dx2

s rotation

R2e Rl =

[cos(61+62)
sin(@1+62)

SY1+8Yy2

—sin(f1+62)
cos(f81+62)

so scales multiply

so rotations add

55

Composing Transformations

ORDER MATTERS!

F 3 F X
T(1,1) & L‘ R{45) &

@]_ *
R(45) T{1,1) T(1,1) R({45) @

.) VA

TaTb =Tb Ta, but Ra Rb '= Rb Ra and Ta Rb != Rb Ta

56

Composing Transformations

suppose we want

Fi|

28"

57

Composing Transformations

suppose we want Rotate(z,-90)

Fi|

28"

p'=R(z,—90)p

58

Composing Transformations

suppose we want Rotate(z,-90)

Fi|

28"

p'=R(z,—90)p

Translate(2,3,0)

rF-_>
/

p'=T(2,3,0)p'

59

Composing Transformations

suppose we want Rotate(z,-90)

Fi|

28"

p'=R(z,—90)p

Translate(2,3,0)

rF-_>
/

p'=T(2,3,0)p'

60

Composing Transformations
p'=TRp

= Which direction to read?
= right to left
= Interpret operations wrt fixed coordinates
= Moving object
=« left to right

= Interpret operations wrt local coordinates
= changing coordinate system

61

Composing Transformations
p'=TRp

= which direction to read?
= right to left
= Interpret operations wrt fixed coordinates
= Moving object
= left to right OpenGL pipeline ordering!
= Interpret operations wrt local coordinates
= changing coordinate system

62

Composing Transformations
p'=TRp

= which direction to read?

= right to left
= Interpret operations wrt fixed coordinates
= Moving object

= left to right OpenGL pipeline ordering!
= Interpret operations wrt local coordinates
= changing coordinate system

= OpenGL updates current matrix with postmultiply
= glTranslatef(2,3,0);
= glRotatef(-90,0,0,1);
= glVertexf(1,1,1);

= Specify vector last, in final coordinate system
=« first matrix to affect it is specified second-to-last 63

Interpreting Transformations

translate by (-1,0) moving object

(2,1) (1.1

A intuitive?

L, >

changing coordinate system

(1,1)

T OpenGL

= same relative position between object and
basis vectors

64

Matrix Composition

= Mmatrices are convenient, efficient way to represent
series of transformations

= general purpose representation
= hardware matrix multiply

= matrix multiplication is associative
= p' = (T*(R*(S™P)))
« p'=(T*R*S)*p
= procedure
= correctly order your matrices!
= multiply matrices together

= result is one matrix, multiply vertices by this matrix
= all vertices easily transformed with one matrix multiply

65

Rotation About a Point: Moving Object

rotate about
pby&:

(y’_‘g =+

(X

,Y)

A\

translate p
to origin

rotate about
origin

/

14

5

T(x,y,2)R(z,0) T(—x,—y,—2)

translate p
back

/

/

Sl

66

Rotation: Changing Coordinate Systems

= same example: rotation around arbitrary
center

67

Rotation: Changing Coordinate Systems

= rotation around arbitrary center

= step 1: translate coordinate system to rotation
center “

68

Rotation: Changing Coordinate Systems

= rotation around arbitrary center
= Step 2: perform rotation

\Z

69

Rotation: Changing Coordinate Systems

= rotation around arbitrary center
= step 3: back to original coordinate system

N2z

70

General Transform Composition

= transformation of geometry into coordinate
system where operation becomes simpler

= typically translate to origin
= perform operation

= transform geometry back to original
coordinate system

71

Rotation About an Arbitrary Axis

= axis defined by two points

= translate point to the origin

= rotate to align axis with z-axis (or x or y)
= perform rotation

= undo aligning rotations

= undo translation

72

Arbitrary Rotation

W

= problem: <

= given two orthonormal coordinate systems XYZ and UVW

=« find transformation from one to the other
m dAnswer.

= transformation matrix R whose columns are U,V,W:

R=u v. w

Arbitrary Rotation

= similarly R(Y) = V& R(Z) = W

74

Transformation Hierarchies

75

Transformation Hierarchies

= scene may have a hierarchy of coordinate
systems

= stores matrix at each level with incremental
transform from parent’s coordinate system

= scene graph

76

Transformation Hierarchy Example 1

Ciiieg) Categ) (itam> ChLarm

trans(0.30,0,0) rot(z,0)

77

Transformation Hierarchies

= hierarchies don’t fall apart when changed
= transforms apply to graph nodes beneath

78

Demo: Brown Applets

http://www.cs.brown.edu/exploratories/
freeSoftware/catalogs/scenegraphs.html

llllll

Transformation Hierarchy Example 2

= draw same 3D data with different
transformations: instancing

80

Matrix Stacks

= challenge of avoiding unnecessary
computation

= Using inverse to return to origin
= computing incremental T, -> T,

Object coordinates

o
ot
.

.
.
.
o
.
[P
P, .t
R -t
.
K R
K ot
. o
o ot
o o
A .
04 *
o
.
B
o
.

s
e
anm®
e

.. T3 "

.
.
"‘
.
.
“‘
o
o
“‘
"‘
"“
O T L L

wns
wam

...
R

World coordinates 81

glPushMatrix()
glPopMatrix()

Matrix Stacks

/ D = C scale(2,2,2) trans(1,0,0)

O
> W OO0

> 00O |0

DrawSquare()
glPushMatrix()
glScale3f(2,2,2)
glTranslate3f(1,0,0)
DrawSquare()
glPopMatrix()

82

Modularization

= drawing a scaled square
push/pop ensures no coord system change

void drawBlock (float k) {
glPushMatrix () ;

glScalef (k,k,k);
glBegin (GL_LINE_LOOP) ;
glVertex3£(0,0,0);
glVertex3£(1,0,0);
glVertex3£f(1,1,0);
glVertex3£(0,1,0);
glEnd() ;

glPopMatrix() ;

83

Matrix Stacks

= advantages
= No need to compute inverse matrices all the time
»« modularize changes to pipeline state
= avoids incremental changes to coordinate systems
= accumulation of numerical errors
= practical issues

= In graphics hardware, depth of matrix stacks is
limited
= (typically 16 for model/view and about 4 for projective
matrix)

84

Transformation Hierarchy Example 3

/\
//f /
e \ glLoadIdentity () ;
V & glTranslatef(4,1,0);
JL\‘_ glPushMatrix () ;
\43"‘& glRotatef (45,0,0,1);
\ \wl glTranslatef (0,2,0);
“F'{L glScalef(2,1,1);
‘ N Pk glTranslate(1,0,0);
‘i F, g glPopMatrix () ;

85

Transformation Hierarchy Example 4

o

glTranslate3f(x,y,0);
glRotatef(4, ,0,0,1);
DrawBody();
glPushMatrix();
glTranslate3f(0,7,0);
DrawHead();
glPopMatrix();
glPushMatrix();
glTranslate(2.5,5.5,0);
glRotatef(6,,0,0,1);
DrawUArm();
glTranslate(0,-3.5,0);
glRotatef(4,,0,0,1);
DrawLArm();
glPopMatrix();

... (draw other arm)
86

Hierarchical Modelling

= advantages
= define object once, instantiate multiple copies
= transformation parameters often good control knobs
= maintain structural constraints if well-designed

= limitations
= expressivity: not always the best controls
= can’t do closed kinematic chains
= Keep hand on hip

= can’t do other constraints

= collision detection
= self-intersection
= walk through walls

87

Single Parameter: simple

= parameters as functions of other params
= clock: control all hands with seconds s

m = s/60, h=m/60, i} @ ﬁ

theta_s = (2 pi s) / 60, ¥ &

theta._m = (2 pi m) / 60,

theta_h = (2 pi h) / 60 0 —
&

88

Single Parameter: complex

= mechanisms not easily expressible with
affine transforms

\¢

http://www.flying-pig.co.uk

89

Single Parameter: complex

= mechanisms not easily expressible with
affine transforms

www flying-plg.couk |

g

http://www.flying-pig.co.uk/mechanisms/pages/irregular.htmil
90

Display Lists

91

Display Lists

= precompile/cache block of OpenGL code for reuse
= usually more efficient than immediate mode
= exact optimizations depend on driver
= good for multiple instances of same object
= but cannot change contents, not parametrizable
= good for static objects redrawn often
= display lists persist across multiple frames

= Interactive graphics: objects redrawn every frame from
new viewpoint from moving camera

= can be nested hierarchically

= snowman example
http://www.lighthouse3d.com/opengl/displaylists

92

One Snowman . R .

void drawSnowMan() {

glColor3£(1.0f, 1.0f, 1.0f);

// Draw Body
glTranslatef(0.0f ,0.75f, 0.0f);
glutSolidSphere(0.75f,20,20);

// Draw Head
glTranslatef(0.0f, 1.0f, 0.0f);
glutSolidSphere(0.25f,20,20);

// Draw Eyes

glPushMatrix();
glColor3£(0.0£,0.0£,0.01);
glTranslatef(0.05f, 0.10f, 0.18f);
glutSolidSphere(0.05f,10,10);
glTranslatef(-0.1f, 0.0f, 0.0f);
glutSolidSphere(0.051,10,10);
glPopMatrix();

// Draw Nose

glColor3f(1.0f, 0.5f , 0.5f);
glRotatef(0.0£,1.0f, 0.0f, 0.0f);
glutSolidCone(0.08f1,0.5£,10,2);

}

93

Instantiate Many Snowmen

// Draw 36 Snowmen

for(inti=-3;i<3; i++)

for(int j=-3; j < 3; j++) {
glPushMatrix();

glTranslatef(i*10.0, 0, j * 10.0);

// Call the function to draw a snowman
drawSnowMan();

glPopMatrix();

36K polygons, 55 FPS .,

Making Display Lists

GLuint createDL() {

GLuint snowManDL;

/I Create the id for the list

snowManDL = glGenLists(1);
glNewList(snowManDL,GL_COMPILE);
drawSnowMan();

glEndList();

return(snowManDL); }

snowmanDL = createDL();
for(inti=-3;i<3;i++)
for(int j=-3; j < 3; j++) {
glPushMatrix();
glTranslatef(i*10.0, 0, j * 10.0);
glCallList(Dlid);
glPopMatrix(); } 36K polygons, 153 FPS s

Transforming Normals

96

Transforming Geometric Objects

= lines, polygons made up of vertices

= just transform the vertices, interpolate
between

= does this work for everything? no!

97

Computing Normals

= polygon:
POlyg P

N
& N =(P,— R)x(P,—P)
P

1 F,
= assume vertices ordered CCW when viewed
from visible side of polygon

= hormal for a vertex

= Specify polygon orientation N
= used for lighting
= supplied by model (i.e., sphere),

or computed from neighboring polygons

98

Transforming Normals

= what is a normal?
= a direction

= homogeneous coordinates: w=0 means direction
« often normalized to unit length

= VS. points/vectors that are object vertex locations

= what are normals for?

= specify orientation of polygonal face

= used when computing lightg|

= SO If points transformed by matrix M, can we just

Ny'
N7'
0

m,

m,,
s,

0

transform normal vector by M too?

m,

m,,
s,

0

m,

My,
s,

0

—_ N

99

Transforming Normals

E; my my, my 1)X
Y _ | My My My Ty Y
4 my,, my, my |2

0] |0 0 0 1]0]

s tfranslations OK: w=0 means unaffected
s rotations OK
= uniform scaling OK

» these all maintain direction

100

Transforming Normals

= nonuniform scaling does not work
= X-y=0 plane
= line x=y
= normal: [1,-1,0]
= direction of line x=-y
= (Ignore normalization for now)

101

Transforming Normals

= apply nonuniform scale: stretch along x by 2

= hew plane x = 2y
= transformed normal: [2,-1,0]

21 12 0 0
1] |0 1 0
0l 1o 0 1
0] 10 0 0

0

0
0
I

<

= normal is direction of line x = -2y or x+2y=0

= not perpendicular to plane!
= should be direction of 2x = -y

102

Planes and Normals

= plane is all points perpendicular to normal
= N-P=0 (with dot product)
« N'P=0 (matrix multiply requires transpose)

P =

o S Q
S N e =

d

= explicit form: plane = ax+by+cz+d

103

Finding Correct Normal Transform

= transform a plane

P P' — MP given M,
N g N'= QN what should Q be?
N ! P = O stay perpendicular
(QN)T (MP) =(substitute from above
T T _ T — TAT
N Q" MP=0 (AB)" =B'A
O'M=1 N"P=0if Q"M=1I

1\T thus the normal to any surface can be
Q — (M) transformed by the inverse transpose of the

modelling transformation
104

Assignments

105

Assignments

= project 1
= out today, due 11:59pm Wed May 18
= you should start very soon!

= build giraffe out of cubes and 4x4 matrices
« think cartoon, not beauty

« template code gives you program shell, Makefile
» http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/p1.tar.gz

s written homework 1
= out today, due 4pm Wed May 18
= theoretical side of material

106

www.giraffes.org/raffe.jp

Real Giraffes

107

Articulated Giraffe

108

Articulated Giraffe

109

Demo

110

Project 1 Advice

= build then animate one section at a time
= ensure youre constructing hierarchy correctly
= Use body as scene graph root
= start with an upper leg

= consider using separate transforms for
animation and modelling

= make sure you redraw exactly and only when
necessary

111

Project 1 Advice

= finish all required parts before
= going for extra credit
= playing with lighting or viewing
= Ok to use glRotate, glTranslate, glScale
= Ok to use glutSolidCube, or build your own

= where to put origin? your choice
= center of object, range - .5t0 +.5
= corner of object, range 0 to 1

112

Project 1 Advice

= visual debugging
= color cube faces differently

= colored lines sticking out of glutSolidCube
faces

= thinking about transformations
= move physical objects around

= play with demos
= Brown scenegraph applets

113

Project 1 Advice

s transitions

= safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

= do not interpolate individual elements of 4x4
matrix!

114

Labs Reminder

= today 3-4, 4-5
= Thu labs are for help with programming projects
« Thursday 11-12 slot deprecated first four weeks

= Tue labs are for help with written assignments
= Tuesday 11-12 slot is fine

= NO separate materials to be handed in
= after-hours door code

115

