|¥?i$ University of British Columbia
= CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Transformations I, II, llI

Week 1, Thu May 12

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Reading

FCG Chap 5 (except 5.1.6, 5.3.1)
FCG pages 224-225
= RB Chap Viewing:
= Sect. Viewing and Modeling Transforms until Viewing
Transformations
= Sect. Examples of Composing Several Transformations

through Building an Articulated Robot Arm

= RB Appendix Homogeneous Coordinates and
Transformation Matrices
= until Perspective Projection

= RB Chapter Display Lists
= (it's short)

Textbook Errata

= list at http://www.cs.utah.edu/~shirley/fcg/errata
= math review: also p 48
= ax(bxc)l=(axb)xc
« transforms: p 91
= should halve x (not y) in Fig 5.10
=« transforms: p 106
= second line of matrices: [x,, Yp, 1]

Vector-Vector Subtraction

= subtract: vector - vector = vector u, —v,
u-v=|u,—v,
Uy —Vy
(3,2)—(6,4)=(-3,-2)
2,5)-@3.1-1)=(-1[10)

argument reversal

Vector-Vector Multiplication

= multiply: vector * vector = scalar

= dot product, aka inner product uev
u, v
U, |®| v, =(”|*V|)+D*Vz)+(u3*"3)
iy V3

S uev=|ufveoss
= geometric interpretation

- lengths, angles u
= can find angle between two ()

vectors v

Matrix Multiplication

= can only multiply

number of left = number of right

= legal Ah i
{a b c | . :
j k
e f g]
. Il m
= undefined -
a b c |-
7 h i
e g I
o p q]

Page 1

Matrices and Linear Systems

= linear system of n equations, n unknowns
3x+7y+2z=4
2x—4y—-3z=-1
Sx+2y+z=1

= matrix form Ax=b
37 2 |«x 4
2 -4 -3|y|=|-1
5 2 1z| |[I

Scan Conversion

Geometry Model/View Perspective Clipping _H

1

Database | | Transform. |~ Lighting Transform.

Scan
Conversion

= scan conversion

= turn 2D drawing primitives (lines,
polygons etc.) into individual pixels
(discretizing/sampling)

= interpolate color across primitive

Review: Rendering Pipeline
Geometry Model/View P Perspective -
Database || Transform, [~ HOMtNG = rronorm. [Cliping 7‘
Scan - Depth _ Frame-
Conversion [~ Texturing — oo [Blending buffer
8
Blending
Geometry Model/View Perspective

=~ Lighting |—f

1

Database Transform. Transform.

Clipping =H

Scan q Depth .
Conversion [Texturing — o0 [Blending
= blending

« final image: write fragments to pixels
= draw from farthest to nearest
= no blending — replace previous color

= blending: combine new & old values with arithmetic
operations

= generate discrete fragments 9
Framebuffer
Geometry Model/View I Perspective ——
Database || Transform, [H9MtNG |~ rronorm, [CliPping —H
Scan - Depth _ Frame-
Conversion [~ Texring |— Teepst [~1 Blending buffer

= framebuffer
= video memory on graphics board that holds image
= double-buffering: two separate buffers

= draw into one while displaying other, then swap

= allows smooth animation, instead of flickering

Review: OpenGL
= pipeline processing, set state as needed

void display()
{

glBegin (GL_POLYGON) ;

glvertex3£(0.25, 0.25, -0.5);
glvertex3£(0.75, 0.25, -0.5);
glvertex3£(0.75, 0.75, -0.5);
glvertex3£(0.25, 0.75, -0.5);
glEnd() ;
glFlush () ;

}

Page 2

Review: Event-Driven Programming

= main loop not under your control
= VS. procedural
= control flow through event callbacks
= redraw the window now
= key was pressed
= mouse moved

= callback functions called from main loop
when events occur

= mouse/keyboard state setting vs. redrawing

Transformations

Overview

= 2D Transformations

= Homogeneous Coordinates

= 3D Transformations

= Composing Transformations
= Transformation Hierarchies

= Display Lists

= Transforming Normals

= Assignments

Transformations
= transforming an object = transforming all its
points

= transforming a polygon = transforming its
vertices

2 @ M

Matrix Representation

= represent 2D transformation with matrix

= multiply matrix by column vector (—»
apply transformation to point

X' a bi«x x'=ax+by
MR N i
= transformations combined by multiplication
x| la bj|d e|h if|x
SH L)

= matrices are efficient, convenient way to represent
sequence of transformations!

Scaling

= scaling a coordinate means multiplying each
of its components by a scalar

= uniform scaling means this scalar is the same
for all components:

o -1

Page 3

Scaling

= non-uniform scaling: different scalars per
component:

Sl e

Y x0.5

= how can we represent this in matrix form?

Scaling

[ax

=l by

= or, in matrix form: [*'|_|a O] x
y] [0 by

H_J
scaling matrix

= scaling operation: {x}
yl

2D Rotation

. = counterclockwise
(', y) - RHS

(X, y)

x"=x cos(0) - y sin(0)
0 y' = x sin(0) + y cos(0)

2D Rotation From Trig Identities

X =rcos (§)
y =rsin (¢)

x"=rcos (¢ +
y' =r1sin (¢ +6)
Trig Identity...

X" =1 cos(9) cos(0) — r sin(¢) sin(0)
y' =rsin(9) cos(0) + r cos() sin(0)

Substitute...
X '=x cos(0) - y sin(0)

y ' =xsin(0) + y cos(6)

2D Rotation Matrix

= easy to capture in matrix form:

x| cos(&) —sin(&) X
y' - sin(&) cos(9) y
= even though sin(q) and cos(q) are nonlinear
functions of q,

= X' is a linear combination of x and y
= y'is a linear combination of x and y

2D Rotation: Another Derivation

x'=xcos@—ysiné
y'=xsin@+ ycos @

Page 4

2D Rotation: Another Derivation

x'=xcos@—ysiné
y'=xsin@+ ycos @

)

2D Rotation: Another Derivation

x'=xcos@—ysiné
y'=xsin@+ ycos @

2D Rotation: Another Derivation

x'=xcos@—ysin @
4 y'=xsin@+ ycos @

2D Rotation: Another Derivation

x'=xcos@—ysin
y'=xsin@+ ycos @

2D Rotation: Another Derivation

x'=xcos@—ysiné
y'=xsin@+ ycos @

Shear

= shear along x axis
= push points to right in proportion to height

A LH
i

Page 5

Shear

= shear along x axis
= push points to right in proportion to height

MR R
e

Reflection

= reflect across x axis

= T T

Reflection

= reflect across x axis

=TI D

2D Translation

(X.y) ,
X a _ X+a _ X
(XY (a.b) {y}{b}_{ﬁb}_{yl

2D Translation
(x\y) x| [a] [x+d] [x
(XYt (@b {y}{b}z{ﬁb}:{yl

SR DM <l

scaling matrix rotation matrix

2D Translation
. vector addition
o) X a| |x+a| X'
(x,y) (a,b) y ol yab| |y
matrix multiplication matrix multiplication
x| fa Ofx {x}_{cos(e) —sin(B)}{x}
y' “lo » y y - sin(@) cos(8) || y

scaling matrix rotation matrix

Page 6

2D Translation

. vector addition
Qw‘g X a| |x+a| x'
(x,y) (a,b) y ol yab| |y

matrix multiplication matrix multiplication
x| fa Ofx {x}_{cos(e) —sin(B)}{x}
y|7lo by y'| |sin(8) cos(8) || y
scaling matrix rotation matrix
a blx| |x
c dl|y - y
_Y_I

translation multiplication matrix?? ¥

Linear Transformations

= linear transformations are combinations of

= shear .

= scale x| _ja bifx x'=ax+by
= rotate y' e d y y'=cx+dy
= reflect

= properties of linear transformations
= satisifes T(sx+1y) = s T(x) + t T(y)
= origin maps to origin
= lines map to lines
= parallel lines remain parallel
= ratios are preserved
= closed under composition

Challenge

= matrix multiplication
= for everything except translation
= how to do everything with multiplication?
= then just do composition, no special cases
= homogeneous coordinates trick
= represent 2D coordinates (x,y) with 3-vector (x,y,1)

Homogeneous Coordinates

= our 2D transformation matrices are now 3x3:

cos(@) —sin(@) 0 a 00
Rotation=|sin(8) cos(@) 0 Scale=|0 b 0
0 01

0 0 1

10T,
Translation=0 1 T, | = use rightmost column
00 1

all x x#l+ax*l x+a
bl y|=|y*l+b*1|=|y+b
11 1 1

Homogeneous Coordinates Geometrically

= pointin 2D cartesian

41

Homogeneous Coordinates Geometrically

homogeneous cartesian

/w
(x,y,w) —— (i,l)
xw w
yw = pointin 2D cartesian + weight w =
w point P in 3D homog. coords
= multiples of (x,y,w)
form aline L in 3D

all homogeneous points on L
represent same 2D cartesian point
= example: (2,2,1) = (4,4,2) = (1,1,0.5)

42

Page 7

Homogeneous Coordinates Geometrically

homogeneous cartesian

Iw
(x,y,w) — (G
xX-w w
yw = homogenize to convert homog. 3D
w point to cartesian 2D point:

= divide by wto get (¥w, y/w, 1)

= projects line to point onto w=1 plane
= when w=0, consider it as direction
=1 = points at infinity

= these points cannot be homogenized

= lies on x-y plane
= (0,0,0) is undefined

43

Homogeneous Coordinates Summary

= may seem unintuitive, but they make
graphics operations much easier

= allow all linear transformations to be
expressed through matrix multiplication

= use 4x4 matrices for 3D transformations

Affine Transformations

= affine transforms are combinations of
= linear transformations .
. X a b cl«x

= translations ,
Yi|=|d e [y
w 00 I|w

= properties of affine transformations
= origin does not necessarily map to origin
= lines map to lines
= parallel lines remain parallel
= ratios are preserved
= closed under composition

45

3D Rotation About Z Axis

x'=xcos@—ysiné
y'=xsin@+ ycos @
7'=z

6 ,

cosf -—sin@

=,

P
‘? 0
} ¥ sind cosé O
(z' 0 0 1
T %/ v 1 0 0 o0 11
(] = general OpenGL command
X glRotatef(angle,x,y,z);

= rotate in z
glRotatef(angle,0,0,1);

(=R]
N =

3D Rotationin X, Y

around x axis: glRotatef(angle,1,0,0);

X' 1 0 0 0 x
Y| |0 cos@ —sind Ofy
2| 7|0 sin@ cos@ Ofz
1 0o 0 0 11

around y axis: glRotatef(angle,0,1,0);

X' cosd 0 singd 0
Y| o 10
2
1

“|-sin@ 0 cos@

X

y

Z

0 (U] 1

- o o

47

3D Scaling

=oa e =
o o o 8
o o T <o
o 8 oo
- o o <o
—_ = =

glScalef(a,b,c);

Page 8

3D Translation

X' 10 0 afx
YI_[0 1 0 by
O 211001 ¢z
1 00 0 11

Q/<a,b,c>

glTranslatef(a,b,c);

49

3D Shear

= shear in x Lo 0

" |01 00

xshear(sy,sz) = 00 1 0

(0 0 0 1jJ

. 1 000

= Shear n y sx 1 sz 0

yshear(sx,sz)= 00 1 0

(OO 0 1]

. 1 0 00

= shearinz o 1 00
zshear(sx,sy)=

sx sy 10

0 0 01

Summary: Transformations

translate(a,b,c) scale(a,b,c)
x' 1 alx x'] [a T~
Y 1 bily Yi_| b y
z' 1 cfz z' c z
1 111 1 11
Rotate(x,8) Rotate (y,6) Rotate (z,0)
X[l X cos 6 sin@ | [cos@ —sin
Y cosf —siné y 1 sin@ cos @
7| sin@ cos@ z —sin @ cos 6 1
1 1)1 1 1

Undoing Transformations: Inverses

T()c,y,z)’I = T(—x,—y,—z)
T(x,y,2) T(=x,—y,—2) = 1

R(z,6)"'= R(z—0) =R"(z,6) (Ris orthogonal)
R(z,0) R(z—6) = 1
1 11
S(sx,sy,52)™" = S(—,—,—)
sx" sy’ sz
1 11
S(sx,5y,52) S(—,—,—) =1
sx" sy’ sz

Composing Transformations

Composing Transformations

= translation

1 dxi 1 dx2

dy 1 dy2

Tl =T(dxi,dy)) = T2 = T(dx2,dy?) =

1 1

P'=T2eP'=T2e[Tle P|=[T2eTl]|e P, where

1 dxi+dx>
1 dy:+dy>
T2eTl= : e

I .

so translations add

Page 9

Composing Transformations

= scaling

sxi+dx2
S2e81= ey .
1 so scales multiply

= rotation

cos(@1+62) —sin(01+62)

sin(@1+62) cos(01+62)
R2eRl= .
1 so rotations add

Composing Transformations

ORDER MATTERS!

L) L' R(45)
R(45)T(1,1) T(1,1) R(45) @

TaTb =Tb Ta, but Ra Rb != Rb Ra and Ta Rb !=Rb Ta

Composing Transformations

suppose we want

Composing Transformations

suppose we want Rotate(z,-90)
Fol i
i
I~
J Fu \
Fy 1 F, :
p'=R(z-90)p

Fol i
i
Fy 1
57
Composing Transformations
suppose we want Rotate(z,-90) Translate(2,3,0)
Fol i
i L1 F
I~
i Fu \ Fo 17
p'=R(z,-90)p p"=T(23,0)p'

Composing Transformations

suppose we want Rotate(z,-90) Translate(2,3,0)
Fol i
i L1 F
I~
i Fu \ Fo 17
p'=R(z-90)p p"=T(2,3,0)p
p"=T(2,3,0)0R(z,-90)p=TRp ©
Page 10

10

Composing Transformations
p'=TRp

= which direction to read?
= right to left
= interpret operations wrt fixed coordinates
= moving object
= left to right
= interpret operations wrt local coordinates
= changing coordinate system

61

Composing Transformations
p'=TRp

= which direction to read?
= right to left
= interpret operations wrt fixed coordinates
= moving object
= left to right OpenGL pipeline ordering!
= interpret operations wrt local coordinates
= changing coordinate system

62

Composing Transformations
p'=TRp

= which direction to read?
= right to left
= interpret operations wrt fixed coordinates
= moving object
= left to right OpenGL pipeline ordering!
= interpret operations wrt local coordinates
= changing coordinate system
= OpenGL updates current matrix with postmultiply
= glTranslatef(2,3,0);
= glRotatef(-90,0,0,1);
= glVertexf(1,1,1);
= specify vector last, in final coordinate system
= first matrix to affect it is specified second-to-last 63

Interpreting Transformations

translate by (-1,0) moving object

.
@ .
.

T intuitive?

changing coordinate system

(1,1

T OpenGL

= same relative position between object and
basis vectors

Matrix Composition

= matrices are convenient, efficient way to represent
series of transformations
= general purpose representation
= hardware matrix multiply
= matrix multiplication is associative
= p'=(T*(R*(S*P)))
= p'=(T*R*S)p
= procedure
= correctly order your matrices!
= multiply matrices together
= result is one matrix, multiply vertices by this matrix
= all vertices easily transformed with one matrix multiply

65

Rotation About a Point: Moving Object

rotate about translate p rotate about translate p
pby & : to origin origin back
P y)
v p
7/
Fu ¢

T(x,y,2)R(z,0) T(=x,—y,—2)

Page 11

Rotation: Changing Coordinate Systems

= same example: rotation around arbitrary

center

67

Rotation: Changing Coordinate Systems

= rotation around arbitrary center

= step 1: translate coordinate system to rotation
center

Rotation: Changing Coordinate Systems

= rotation around arbitrary center
= step 2: perform rotation

69

Rotation: Changing Coordinate Systems

= rotation around arbitrary center
= step 3: back to original coordinate system

General Transform Composition

= transformation of geometry into coordinate
system where operation becomes simpler

= typically translate to origin
= perform operation

= transform geometry back to original
coordinate system

Rotation About an Arbitrary Axis

= axis defined by two points

= translate point to the origin

= rotate to align axis with z-axis (or x or y)
= perform rotation

= undo aligning rotations

= undo translation

Page 12

Arbitrary Rotation

= given two orthonormal coordinate systems XYZ and UVW
= find transformation from one to the other

= answer:
= transformation matrix R whose columns are U,V,W:

u)t v)t w)t
R=|u, v, w,
u, V. w.

Arbitrary Rotation

= why?

<
==

|ux v
R(X)=|u, v

u, v,
z z

=
=

E =

=(u,,u,,u.)
=U

= similarly R(Y) = V& R(Z) =W

Transformation Hierarchies

Transformation Hierarchies

= scene may have a hierarchy of coordinate
systems

= stores matrix at each level with incremental
transform from parent’s coordinate system

= scene graph

Transformation Hierarchy Example 1

trans(0.30,0,0) rot(z,6)

Transformation Hierarchies

= hierarchies don'’t fall apart when changed
= transforms apply to graph nodes beneath

Head/and*NeckLeg Foot
arm

Head Neck Ieg Fool

Page 13

Demo: Brown Applets

http://www.cs.brown.edu/exploratories/
freeSoftware/catalogs/scenegraphs.html

Transformation Hierarchy Example 2

= draw same 3D data with different
transformations: instancing

80

Matrix Stacks

= challenge of avoiding unnecessary
computation
= using inverse to return to origin :I
= computing incremental T, -> T,

Obiject coordinates

World coordinates 81

Matrix Stacks

D = C scale(2,2,2) trans(1,0,0)

n DrawSquare()

glPushMatrix()

u n n n glScale3f(2,2,2)
glTranslate3f(1,0,0)

oloinloilE==

glPopMatrix()

glPushMatrix()
glPopMatrix()

Modularization

= drawing a scaled square
= push/pop ensures no coord system change

void drawBlock (float k) {
glPushMatrix();

glScalef (k, k,k);
glBegin (GL_LINE_LOOP) ;
glvVertex3£(0,0,0);
glVertex3£(1,0,0);
glVertex3£(1,1,0);
glVertex3£(0,1,0);
glEnd();

glPopMatrix();

83

Matrix Stacks

= advantages
= No need to compute inverse matrices all the time
= modularize changes to pipeline state
= avoids incremental changes to coordinate systems
= accumulation of numerical errors
= practical issues
= in graphics hardware, depth of matrix stacks is
limited
= (typically 16 for model/view and about 4 for projective
matrix)

Page 14

14

Transformation Hierarchy Example 3 Transformation Hierarchy Example 4
glTranslate3f(x,y,0);
glRotatef(6,,0,0,1);

\ DrawBody();
/ glPushMatrix();
glTranslate3f(0,7,0);
[\ / glLoadIdentity(); DrawHead();
‘7 S glTranslatef(4,1,0); oF i glPopMatrix();
/ \l v glPushMatrix(); glPushMatrix();
K70 glRotatef (45,0,0,1); glTranslate(2.5,5.5,0);
N | glTranslatef (0,2,0); JINEEERN glRotatef(6,,0,0,1);
- F glScalef(2,1,1); [] DrawUArm();

‘ p‘i 'ﬁ* glTranslate(1,0,0); glTranslate(0,-3.5,0);
i F ki glPopMatrix(); glRotatef(6,,0,0,1);
&

Fy e='— DrawLArm();
glPopMatrix();
... (draw other arm)
85 86
Hierarchical Modelling Single Parameter: simple

= advantages
=« define object once, instantiate multiple copies
= transformation parameters often good control knobs

= parameters as functions of other params
= clock: control all hands with seconds s

= maintain structural constraints if well-designed
= limitations ’ m = s/60, h=m/60,) Y o V4
= expressivity: not always the best controls theta_s = (2 pi s) / 60, N &
» can’t do closed kinematic chains theta_m = (2 pi m) / 60,
= keep hand on hip theta_h = (2 pi h) / 60 — =
= can’t do other constraints
= collision detection &

= self-intersection 0 D %

= walk through walls

87 88
Single Parameter: complex Single Parameter: complex
= mechanisms not easily expressible with = mechanisms not easily expressible with
affine transforms affine transforms
\ , -
. A
-« 2 il
http://www.flying-pig.co.uk http://www.flying-pig.co.uk/mechanisms/pages/irregular.html
89 90

Page 15

Display Lists

91

One Snowman "

void drawSnowMan() { /I Draw Eyes

glPushMatrix();
g1Color3£(0.0£,0.0£,0.0f);
glTranslatef(0.05f, 0.10f, 0.18f);

glColor3f(1.0f, 1.0f, 1.0f);

// Draw Body glutSolidSphere(0.05£,10,10);

glTranslatef(0.0f ,0.75f, 0.0f); glTranslatef(-0.1f, 0.0f, 0.0f);

glutSolidSphere(0.75£,20,20); glutSolidSphere(0.05£,10,10);
glPopMatrix();

// Draw Head

gITranslatef(0.0f, 1.0f, 0.0f); // Draw Nose

glutSolidSphere(0.25£,20,20); glColor3f(1.0f, 0.5f , 0.5f);

glRotatef(0.0£,1.0f, 0.0f, 0.0f);
glutSolidCone(0.08£,0.5f,10,2);
}

93

Making Display Lists

GLuint createDL() {

GLuint snowManDL;

// Create the id for the list

snowManDL = glGenLists(1);
gIlNewList(snowManDL,GL_COMPILE);
drawSnowMan();

glEndList();

return(snowManDL); }

snowmanDL = createDL();
for(inti=-3;i<3;i++)
for(int j=-3; j < 3; j++) {
glPushMatrix();
glTranslatef(i*10.0, 0, j * 10.0);

glCallList(Dlid);
glPopMatrix(); } 36K polygons, 153 FPS s

Display Lists

= precompile/cache block of OpenGL code for reuse
= usually more efficient than immediate mode
= exact optimizations depend on driver
= good for multiple instances of same object
= but cannot change contents, not parametrizable
= good for static objects redrawn often
= display lists persist across multiple frames

= interactive graphics: objects redrawn every frame from
new viewpoint from moving camera

= can be nested hierarchically
= snowman example
http://www.lighthouse3d.com/opengl/displaylists

92

Instantiate Many Snowmen

// Draw 36 Snowmen
for(inti=-3;i<3;i++)
for(int j=-3; j < 3; j++) {
glPushMatrix();
glTranslatef(i*10.0, 0, j * 10.0);
/I Call the function to draw a snowman
drawSnowMan();

glPopMatrix();

36K polygons, 55 FPS o

Transforming Normals

9%

Page 16

Transforming Geometric Objects

= lines, polygons made up of vertices

= just transform the vertices, interpolate
between

= does this work for everything? no!

97

Computing Normals

Ni o B
ﬁ E N=(P,~R)X(P,~F)
P

1 P
= assume vertices ordezred CCW when viewed
from visible side of polygon
= normal for a vertex
= specify polygon orientation N
= used for lighting

= supplied by model (i.e., sphere),
or computed from neighboring polygons

= polygon:

98

Transforming Normals

= what is a normal?
= adirection Y
« homogeneous coordinates: w=0 means direction | <
= often normalized to unit length
= Vs. points/vectors that are object vertex locations
= what are normals for?
= specify orientation of polygonal face
= used when computing lightg | [m, m, m; T, || Nx
Ny'| |my my my T, || Ny

N

Nz my my my T, || Nz
0 o 0 0 0

= so if points transformed by matrix M, can we just
transform normal vector by M too? K

Transforming Normals

my o my o omy T,

x

_|ma omyy omy T

X

y

Z my my, my T,
0 0 0 0

(=

= translations OK: w=0 means unaffected
= rotations OK
= uniform scaling OK

= these all maintain direction

Transforming Normals

= nonuniform scaling does not work
= x-y=0 plane
= line x=y
= normal: [1,-1,0]
= direction of line x=-y
= (ignore normalization for now)

101

Transforming Normals

= apply nonuniform scale: stretch along x by 2
= new plane x = 2y
= transformed normal: [2,-1,0]
2112 0 0 0f1
-1 (0 1 0 0]-1
oo 0 1 0|0
o]0 0o 1f0

= normal is direction of line x = -2y or x+2y=0
= not perpendicular to plane!
= should be direction of 2x = -y

102

Page 17

17

Planes and Normals

= plane is all points perpendicular to normal
« N-P=0 (with dot product)
-« N'P=0 (matrix multiply requires transpose)

N= P=

a X
b y
C Z
d w
= explicit form: plane = ax+by +cz+d

103

Assignments

105

Finding Correct Normal Transform

= transform a plane
P P'=MP

given M,
N N' — QN what should Q be?
N T P'=0 stay perpendicular
(QN)T (MP)=0 substitute from above
T AT _ (AB)" =B"A"
N'Q"MP =0
QTM =] N'P=0if Q"M =I
1\F thus the normal to any surface can be
= transformed by the inverse transpose of the
M
modelling transformation

104

Real Giraffes

www.giraffes.org/graffe.jpg

Assignments

= project 1
= out today, due 11:59pm Wed May 18
= you should start very soon!
= build giraffe out of cubes and 4x4 matrices
= think cartoon, not beauty
= template code gives you program shell, Makefile
= http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/p1.tar.gz
= written homework 1
= out today, due 4pm Wed May 18
= theoretical side of material

Articulated Giraffe

Page 18

18

Articulated Giraffe

Demo

110

Project 1 Advice

= build then animate one section at a time
= ensure you’re constructing hierarchy correctly
= use body as scene graph root
= start with an upper leg

= consider using separate transforms for
animation and modelling

= make sure you redraw exactly and only when
necessary

111

Project 1 Advice

= finish all required parts before
= going for extra credit
= playing with lighting or viewing
= Ok to use glRotate, glTranslate, glScale
= ok to use glutSolidCube, or build your own
= where to put origin? your choice
= center of object, range - .5to +.5
= corner of object, range 0 to 1

112

Project 1 Advice

= visual debugging
= color cube faces differently

= colored lines sticking out of glutSolidCube
faces

= thinking about transformations
= move physical objects around
= play with demos
= Brown scenegraph applets

113

Project 1 Advice

= transitions

= safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

= do not interpolate individual elements of 4x4
matrix!

114

Page 19

19

Labs Reminder

= in CICSR 011
= today 3-4, 4-5
» Thu labs are for help with programming projects
= Thursday 11-12 slot deprecated first four weeks
= Tue labs are for help with written assignments
= Tuesday 11-12 slot is fine
= NO separate materials to be handed in
= after-hours door code

115

Page 20

20

