University of British Columbia
CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Intro, Math Review, OpenGL Pipeline

Week 1, Tue May 10

hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Introduction

Expectations

hard course!

= heavy programming and heavy math

fun course!

= graphics programming addictive, create great demos
programming prereq

« CPSC 216 (Program Design and Data Structures)

= course language is C++/C

math prereq

« MATH 200 (Calculus Ill)

= MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure

45% programming projects

=« 9% project 1 (building beasties with cubes and math)
= 9% project 2 (flying)

= 9% project 3 (shaded terrain)

=« 18% project 4 (create your own graphics game)
25% final

15% midterm (week 4, Tue 5/31)

15% written assignments

= 5% each HW 1/2/3

programming projects and homeworks synchronized

4

Programming Projects

s Structure
= C++, Linux
= OK to cross-platform develop on Windows
= OpenGL graphics library
= GLUT for platform-independent windows/UI
= face to face grading in lab
= Hall of Fame
= project 1: building beasties
= previous years: elephants, birds, poodles
= project 4: create your own graphics game

Late Work

= 3 grace days

« for unforeseen circumstances

= strong recommendation: don’t use early in term

« handing in late uses up automatically unless you tell us
= otherwise: 25% per 24 hours

= No work accepted after solutions handed out
= exception: severe illness or crisis, as per UBC rules

= let me know ASAP (in person or email)

=« must also turn in form with documentation
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005/illness.html

Regrading

= t0 request assignment or exam regrade

= must submit detailed written explanation of
why you think the grader was incorrect for the
particular problem that you are disputing

= | may regrade entire assignment

= thus even if | agree with your original request,
your score may end up higher or lower

Course Information

= course web page is main resource
s http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
= updated often, reload frequently
= Newsgroup is ubc.courses.cpsc.414
= note old course number still used
= readable on or off campus
o (no WebCT)

Labs

= attend two labs per week, 3 sessions each
« Tue/Thu 11-12, 3-4, 4-5
= Thursday afternoon better than Thu morning

= Tuesdays: example problems in spirit of
written assignments and exams

= Thursdays: help with programming projects
= no deliverables
= strongly recommend that you attend

Teaching Staff

s Instructor: Dr. Munzner

s Imm@cs.ubc.ca

= Office hrs in CICSR 011
= Mon 4:30-5:30

= TAs: Warren Cheung, Greg Kempe
s Wcheung@cs.ubc.ca
s Kempe@cs.ubc.ca

= Use newsgroup not email for all questions
that other students might care about

10

Required Reading

= Fundamentals of Computer Graphics
= Peter Shirley, AK Peters

= OpenGL Architecture Review Board
a V 1.1 available for free online

= readings posted on schedule page

11

Learning OpenGL

= this is a graphics course using OpenGL
= not a course *on* OpenGL

= upper-level class: learning APIs mostly on
your own

= only minimal lecture coverage
= basics, some of the tricky bits

= OpenGL Red Book

= many tutorial sites on the web
= Nnehe.gamedev.net

12

Plagiarism and Cheating

= don’t cheat, | will prosecute
= insult to your fellow students and to me

= programming and assignment writeups must be
individual work

= exception: project 3 can be team of two
= can discuss ideas, browse Web
= but cannot just copy code or answers
= you must be able to explain algorithms during face-to-
face demo

= Or no credit for that part of assignment, possible
prosecution

13

Citation

= cite all sources of information
= Web sites, study group members, books
= README for programming projects

= end of writeup for written assignments
= http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/policies.himl#plag

14

What is Computer Graphics?

= create or manipulate images with computer
= this course: algorithms for image generation

What is CG used for?

= graphical user interfaces
= modeling systems
= applications

= Simulation & visualization

16

What is CG used for?

= MOVIeS
= animation
= special effects

17

What is CG used for?

= computer games

P I/}

EXiFFlEME G RACING

PIayStanon c

18

What is CG used for?

= Images
= design
= advertising
= art

19

What is CG used for?

= Vvirtual reality / immersive displays

20

Real or CG?

http://www.alias.com/eng/etc/takeorfoto/quiz.html

21

Real or CG?

22

Real or CG?

23

Real or CG?

24

This Course

m We cover
= basic algorithms for
= rendering — displaying models
= (modeling — generating models)
= (animation — generating motion)
= programming in OpenGL, C++
= we do not cover
= art/design issues
= commercial software packages

25

Other Graphics Courses

s CPSC 424: Geometric Modeling
s CPSC 426: Computer Animation

s CPSC 514: Image-based Modeling and
Rendering

s CPSC 526: Computer Animation

s CPSC 533A: Digital Geometry

s CPSC 533B: Animation Physics

s CPSC 533C: Information Visualization

26

Rendering

= creating images from models
= geometric objects
= lines, polygons, curves, curved surfaces
= camera
= pinhole camera, lens systems, orthogonal
= shading
= light interacting with material

= Pixar Shutterbug series

« Williams and Siegel using Renderman, 1990
= www.siggraph.org/education/ materials/HyperGraph/shutbug.htm

27

Modelling Transformation: Object Placement

28

Viewing Transformation: Camera Placement

29

Perspective Projection

30

Depth Cueing

31

Depth Clipping

32

Colored Wireframes

33

Hidden Line Removal

34

Hidden Surface Removal

35

Per-Polygon Shading

36

Gouraud Shading

37

Specular Reflection

38

ing

Phong Shad

39

Curved Surfaces

40

Complex Lighting and Shading

41

Texture Mapping

42

Displacement Mapping

43

Reflection Mapping

44

Modelling

= generating models
= lines, curves, polygons, smooth surfaces
= digital geometry

45

Animation

= generating motion
= Interpolating between frames, states

46

Math Review

47

Reading

s FCG Chapter 2: Miscellaneous Math
= except for 2.11 (covered later)
= Skim 2.2 (sets and maps), 2.3 (quadratic egns)

= important: 2.3 (trig), 2.4 (vectors), 2.5-6 (lines)
2.10 (linear interpolation)

= Skip 2.5.1,2.5.3,2.7.1, 2.7.3, 2.8, 2.9
s FCG Chapter 4.1-4.25: Linear Algebra
= Skim 4.1 (determinants)

= important: 4.2.1-4.2.2, 4.2.5 (matrices)
= SKip 4.2.3-4, 4.2.6-7 (matrix numerical analysis)

48

Textbook Errata

m list at http://www.cs.utah.edu/~shirley/fcg/errata

= p 29, 32, 39 have potential to confuse

49

Notation: Scalars, Vectors, Matrices

= scalar a
= (lower case, italic)

= vector a = [al a, .. an]
= (lower case, bold)

= matrix _ _
= (upper case, bold) a,, d,, dgj

A=|a, ay, ay

50

Vectors

= arrow: length and direction
= oriented segment in nD space

= Offset / displacement

= location if given origin

51

Column vs. Row Vectors

= rOw vectors a_ = [al a, .. an]
_al _
= column vectors
a,
acol —
an

= switch back and forth with transpose

52

Vector-Vector Addition

s add: vector + vector = vector

= parallelogram rule
= tail to head, complete the triangle

geometric

examples:

algebraic
u, +v,

u+v=|u,+v,

(3,2)+(6,4) =(9,6)
(2,5,1)+(3,1,—1) =(5,6,0)

53

Vector-Vector Subtraction

s Subtract: vector - vector = vector

\Y

(3,2)—(6,4) =(—3,-2)

u —v

U, —Vv,

Uz — V3

(2,5,1)-(3,1,-1) =(-1,4,0)

54

Vector-Vector Subtraction

s Subtract: vector - vector = vector

u+(—v)

argument reversal

(3,2)—(6,4) =(—3,-2)
(2,5,1)-(3,1,-1) =(-1,4,0)

u —v

U, —Vv,

Uz — V3

Scalar-Vector Multiplication

= multiply: scalar * vector = vector
= vector is scaled

““““ a*u=(@*u,a*u,,a*u,)

2%(3,2)=(6,4)
S*(2,5,1)=(1,2.5,.5)

56

Vector-Vector Multiplication

= multiply: vector * vector = scalar
= dot product, aka inner product uev

u, |® v, =(”1>I<V1)‘|'(”1*Vz)"'(%*V3)

57

Vector-Vector Multiplication

= multiply: vector * vector = scalar
= dot product, aka inner product uev

u, |® v, =(”1*"'1)"'(”1*Vz)"'(%*"’3)

o | uev= HuHHVH cos @
= geometric interpretation

= lengths, angles u
= can find angle between two 2
vectors Vv

58

Dot Product Geometry

= can find length of projection of u onto v

vl
nev 6 |
A%

HuHcos 6 = ¢ ¢

HVH HuHcosH
= as lines become perpendicular,

uev—(

[T

ot \ o g 4 59

Dot Product Example

:(ul >I<"1)‘|'(”1 *V2)+(u3 >I<"3)

=O*D+dA*7)+(2%*3)=6+7+6=19

60

Vector-Vector Multiplication, The Sequel

= multiply: vector * vector = vector

= Cross procljuct w, | (v,] [uy, —u,
= algebraic w, (x| v, | =] uy, —uv,
= geometric Us | [Vs] [WVo TURYY

b
faxb|=Jullvjsine | "

axb| parallelogram

area b
= axb perpendicular \
to parallelogram \\

61

RHS vs LHS Coordinate Systems

= right-handed coordinate system

7z right hand rule:
index finger x, second finger y;
'<>v right thumb points up
X
y Z=XXYy

= |left-handed coordinate system

left hand rule:

index finger x, second finger y;

left thumb points down

Z=XXYy

62

Basis Vectors

= take any two vectors that are linearly
iIndependent (nonzero and nonparallel)

= can use linear combination of these to define
any other vector:

c=wa+w,b

63

Orthonormal Basis Vectors

= if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)

= we have Cartesian coordinate system
= familiar Pythagorean definition of distance

orthonormal algebraic properties A
el =yl =1. Y
xey =0 >

X
o ¥ 0.5Y
TR
2X >

64

Basis Vectors and Origins

= coordinate system: just basis vectors
= can only specity offset: vectors

= coordinate frame: basis vectors and origin
= can specify location as well as offset: points

p=0-+xi+ V)

65

Working with Frames

P =0+xi+ y]

F,

66

Working with Frames

P =0+xi+ y]

Ho

P = (35'1)

67

Working with Frames

P =0+xi+ y]

J P = (3!'1)

68

Working with Frames

P =0+xi+ y]

J P = (35'1)

p = (-1.5,2)

69

Working with Frames

P =0+xi+ y]
jA
0 i .p
1__‘.J P= (35'1)
i|0 /

p = (-1.5,2)

70

Working with Frames

pP=0+xi+ y]
jA
()] i .p
1__‘.J P= (35'1)
e 1/ 0 = (-1.5,2)

i p=(1,2)

71

Named Coordinate Frames

= origin and basis vectors P =0+ax+by+cz

= pick canonical frame of reference
= then don't have to store origin, basis vectors
= jJust p=(a,b,c)

= convention: Cartesian orthonormal one on
previous slide

= handy to specify others as needed
= airplane nose, looking over your shoulder, ...

= really common ones given names in CG
= Object, world, camera, screen, ...

72

Lines

= slope-intercept form by 0
sy=mx+Db
= iImplicit form
sy—mx—-b=0 R=a
s Ax+By+C=0
f(x,y)=y-mx-b
= f(xy) =0 m = -b/a

73

Implicit Functions

= find where functionis 0
= plug In (x,y), check if
= 0: on line
= < 0:inside
= > 0: outside
= analogy: terrain
= sea level: =0

= altitude: function value
= topo map: equal-value

contours (level sets)

74

Implicit Circles
s fny)=(x=x) +(y=y) —r
= circle is points (x,y) where f(x,y) =0
= p=(x,y),c=(x,y):(p—c)e(p—c)—r" =0
= points p on circle have property that vector
from ¢ to p dotted with itself has value 2
« [p—c~r* =0
= points points p on the circle have property
that squared distance from ¢ to p is r?
. p-¢f -r=0
= points p on circle are those a distance rfrom
center point ¢ 75

Parametric Curves

= parameter: index that changes continuously

= (X,y): point on curve
= {: parameter

= vector form

= p=fQ)

X

Y

g(t)

h(D)_

76

X

na

= p(t)=p,+1(P, —P,)
s p(#)=0+1(d)

= start at point p,
go towards p;,
according to parameter t

= P(0) = Py, P(1) = P4

2D Parametric Lines

X+ (X, — Xx,)

Vo T t(yl _Y())_

Linear Interpolation

= parametric line is example of general concept
= p(t) =p, +1(P; —Py)
= Interpolation

= p goes throughaatt=0
= p goes through b at t =1

= liInear
= weights ¢, (1-1) are linear polynomials in t

78

Matrix-Matrix Addition

s add: matrix + matrix = matrix

my mp
My Ny, |
= example
g _

I
2

7

1

s

n,+m,

Ny +m,,

1+(-2) 3+5

2+ 4+1

n,+m,

Ny T My, |

-1 8
9 5

79

= multiply: sca

a

Scalar-Matrix Multiplication

my, mp

My, Ny, |

= example

s

3%

(3%D 3%4

ES
a*m,,

S
_Cl m,,

3%5

K
a“m,,

ar * matrix = matrix

K
a mzz_

80

Matrix-Matrix Multiplication

= r'OW by column

my, My | 1y, Pri

Ry} Ny, | Poi

My, Ny, |

Py = myny +mpn,,

P12
P2

81

Matrix-Matrix Multiplication

= r'OW by column
m m

m,, N,

P11

o

Py = myny +mpn,,

Doy = My Ny T My,

P12
P2

82

Matrix-Matrix Multiplication

= r'OW by column

my, mp

My Ny, ||

P11
P

Py = myny +mpn,,

Doy = My Ny T My,

P, = mny, + mpyn,,

P12

P

83

Matrix-Matrix Multiplication

= r'OW by column

my,

My || Ny 11, Pri

My Myl My |y, Poi

Py = myny +mpn,,
Doy = My Ny T MpN,,
P, = myny, + mpyn,,

Doy =My Ny, + My,

P12)

P2

84

Matrix-Matrix Multiplication

= row by column

my, my, |y |1y, Pri

My Myl My |y, Poi

Py = My 1y + MmNy,

Py = My iy T My,

D1y =My iy, T 1,1,

Py = My Ny, + Ny,
= noncommutative: AB = BA

P12)

P2

85

Matrix Multiplication

= can only multiply if
number of left rows = number of right cols

= legal _ _
a b c

e f 8.

= undefined i)
a b c
e f g

o P g

86

Matrix-Vector Multiplication

= points as column vectors: postmultiply

= points as row vectors: premultiply

[x

y!

x'
y!
Z!

h!

Z!

nl=lx y z]

e
Y
Z

p'=Mp

T

87

Matrices

— _T —

] transpose my, my, m; my my,
My My My Moy || Ty
My My My Mgy M5
| My My, My My, | | Ty
= identity OO0
O 1 0 O
O 01 O
0 0 0 1]

= inverse AA7 =1
= not all matrices are invertible

88

Matrices and Linear Systems

= linear system of n equations, n unknowns
3Ix+T7y+2z=4
2x—4y—-3z=-1
Sx+2y+z=1

= matrix form Ax=b

3 7 2 | x 4
2 -4 =3|y
5 2 1 || z —1

ll
I
ek

Rendering Pipeline

90

Reading

= RB Chap. Introduction to OpenGL

= RB Chap. State Management and Drawing
Geometric Objects

= RB Appendix Basics of GLUT
= (Basics of Auxinv 1.1)

91

Rendering

= goal
« transform computer models into images
= may or may not be photo-realistic
= Interactive rendering
= fast, but limited quality
= roughly follows a fixed patterns of operations
= rendering pipeline
= Offline rendering
= ray-tracing
= global illumination

92

Rendering

= tasks that need to be performed

(in no particular order):

= project all 3D geometry onto the image plane
= geometric transformations

= determine which primitives or parts of primitives are

visible

= hidden surface removal

« determine which pixels a geometric primitive covers
= SCan conversion

« compute the color of every visible surface point
=« lighting, shading, texture mapping

93

Rendering Pipeline

= what is the pipeline?
« abstract model for sequence of operations to
transform geometric model into digital image
= abstraction of the way graphics hardware works

= underlying model for application programming
interfaces (APIs) that allow programming of graphics
hardware

=« OpenGL
= Direct 3D

= actual implementation details of rendering pipeline
will vary

94

Rendering Pipeline

Geomers || Modetow

Database Transform. Lighting

Scan

Conversion || TeXturing Blending

95

Geometry Database

Geometry

Database

= geometry database

= application-specific data structure for
holding geometric information

= depends on specific needs of application

=« triangle soup, points, mesh with connectivity
information, curved surface

96

Model/View Transformation

Geometry Model/View

Database Transform.

= modeling transformation

= map all geometric objects from local coordinate
system into world coordinates

= Viewing transformation

= map all geometry from world coordinates into
camera coordinates o7

Lighting

Geometry Model/View

Database Transform. Lighting

= lighting
= compute brightness based on property of
material and light position(s)

= computation is performed per-vertex

98

Perspective Transformation

Geometry Model/View Perspective

Lighting

Database Transform. Transform.

= perspective transformation
= projecting the geometry onto the image plane

= projective transformations and model/view
transformations can all be expressed with 4x4
matrix operations

99

Clipping

Geometry Model/View Perspective

Lighting

Database Transform. Transform. [] ClPPINg

= Clipping
= removal of parts of the geometry that fall
outside the visible screen or window region

= Mmay require re-tessellation of geometry

100

Texture Mapping

Geometry Model/View <y Perspective o
Database Transform. Lighting Transform. Clipping

Scan
Conversion

Texturing

= texture mapping
= “gluing images onto geometry”

= color of every fragment is altered by
looking up a new color value from an
iImage

101

Depth Test

Model/View
Transform.

Perspective
Transform.

Geometry
Database

] Scan . | Depth |
Conversion Texturing Test

= depth test

= remove parts of geometry hidden behind
other geometric objects

= perform on every individual fragment
= other approaches (later) 102

Lighting — Clipping

Pipeline Advantages

= modularity: logical separation of different components
= easy to parallelize

« earlier stages can already work on new data while later
stages still work with previous data

= similar to pipelining in modern CPUs

= but much more aggressive parallelization possible
(special purpose hardware!)

« Important for hardware implementations
= only local knowledge of the scene is necessary

103

Pipeline Disadvantages

= limited flexibility

= sSome algorithms would require different

ordering of pipeline stages

= hard to achieve while still preserving
compatibility

= only local knowledge of scene is available

= Sshadows

= global illumination

104

OpenGL (briefly)

105

OpenGL

= started in 1989 by Kurt Akeley
= based on IRIS_GL by SGi

= APl to graphics hardware

= designed to exploit hardware optimized for
display and manipulation of 3D graphics

= Implemented on many different platforms
= low level, powerful flexible
= pipeline processing

= Set state as needed

106

Graphics State

= Set the state once, remains until overwritten
= glColor3f(1.0, 1.0, 0.0)
= glSetClearColor(0.0, 0.0, 0.2)
= glEnable(LIGHTO)
= glEnable(GL_DEPTH_TEST)

107

Geometry Pipeline

= tell it how to interpret geometry
« glBegin(<mode of geometric primitives>)
= mode = GL_TRIANGLE, GL_POLYGON, etc.

= feed it vertices
« glVertex3f(-1.0, 0.0, -1.0)
« glVertex3f(1.0, 0.0, -1.0)
« glVertex3f(0.0, 1.0, -1.0)

= tell it you're done
= glEnd()

108

Open GL: Geometric Primitives

[

wike [3l
vie my2

GL_POINTS

GL_LINES

N

Vi ¥
GL_TRIANGLES

Vb
 rd
v
wr

GL_CQUALS

glPointSize(float size);
glLineWidth(float width);
glColor3f(float r, float g, float b);

e
<X,

GL_LINE_STRIP

vl v vd
'rll/\-ugd
vE

GL_TRIAMGLE_STRIP

wr
Wi
.ﬁﬂ v

GL_QuAD_STRIP

w5
"”M
' | vi

GL_LINE_LOOF
v
‘ ;'ﬂ
ﬂ
wd
GL_THIANGLE_FAN
vl

V!

)
GL_POLYGON

109

Code Sample

void display ()
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER BIT);
glColor3£(0.0, 1.0, 0.0);
glBegin (GL_POLYGON) ;
glVertex3f(0.25, 0.25, -0.5);
glVertex3f£(0.75, 0.25, -0.5);
glVertex3f£(0.75, 0.75, -0.5);
glVertex3f(0.25, 0.75, -0.5);
glEnd() ;
glFlush();

= more OpenGL as course continues

110

GLUT

111

GLUT: OpenGL Utility Toolkit

= developed by Mark Kilgard (also from SGl)
= simple, portable window manager
= opening windows
» handling graphics contexts
= handling input with callbacks
= keyboard, mouse, window reshape events
= timing
= idle processing, idle events
= designed for small-medium size applications

= distributed as binaries
= free, but not open source 12

GLUT Draw World

int main(int argc, char **argv)

{
glutInit (&argc, argv);
glutInitDisplayMode (GLUT_RGB |

GLUT DOUBLE | GLUT_DEPTH);

glutInitWindowSize(640, 480);
glutCreateWindow("openGLDemo");
glutDisplayFunc(DrawWorld);
glutIdleFunc (Idle);
glClearColor(1,1,1);
glutMainLoop () ;

return O; // never reached

113

Event-Driven Programming

= main loop not under your control
= VS. procedural
= control flow through event callbacks
= redraw the window now
= key was pressed
= Mouse moved

= callback functions called from main loop
when events occur

= mouse/keyboard state setting vs. redrawing

114

GLUT Callback Functions

// you supply these kind of functions

void reshape (int w, int h);

void keyboard (unsigned char key, int x, int y);
void mouse (int but, int state, int x, int y);
void idle();

void display();

// register them with glut

glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyboard) ;
glutMouseFunc (mouse) ;
glutIdleFunc (idle);
glutDisplayFunc (display) ;

void glutDisplayFunc (void (*func) (void));
void glutKeyboardFunc (void (*func) (unsigned char key, int x, int y));
void glutIdleFunc (void (*func) ());

void glutReshapeFunc (void (*func) (int width, int height)); s

Display Function

void DrawWorld() {

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

glMatrixMode (GL_MODELVIEW);
glLoadIdentity () ;

glClear (GL_COLOR_BUFFER BIT) ;

glutSwapBuffers () ;
}

= directly update value of angle variable
= SO, why doesn't it spin?
= only called in response to window/input event!

116

Idle Function

void Idle () {
angle += 0.05;
glutPostRedisplay () ;
}

= called from main loop when no user input
= should return control to main loop quickly
= update value of angle variable here

= then request redraw event from GLUT
= draw function will be called next time through

s continues to rotate even when no user action

117

Keyboard/Mouse Callbacks

= do minimal work
= request redraw for display

= example: keypress triggering animation
= do not create loop in input callback!
= What if user hits another key during animation?
= Shared/global variables to keep track of state
= display function acts on current variable value

118

Labs

119

Thursday Lab

= labs start Thursday

= 11-12: morning not ideal, it's before lecture

= 3-4,4-5: better, try to attend afternoon if possible
= project 0

= make sure you can compile OpenGL/GLUT

= useful to test home computing environment
= template: spin around obj files
= todo: change rotation axis

= do not hand in, not graded
= http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/a0

= project 1
= transformations
= more on Thursday after transformations lecture

120

Remote Graphics

= OpenGL does not work well remotely
= very slow

= only one user can use graphics at a time

= current X server doesn'’t give priority to console, just
does first come first served

= problem: FCFS policy = confusion/chaos
= solution: console user gets priority

« only use graphics remotely if nobody else logged on
« With ‘who’ command, “:0” is console person

= stop using graphics if asked by console user via emalil
= Or console user can reboot machine out from under you

121

