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Introduction



Expectations

hard course!

= heavy programming and heavy math

fun course!

= graphics programming addictive, create great demos
programming prereq

« CPSC 216 (Program Design and Data Structures)

= course language is C++/C

math prereq

« MATH 200 (Calculus Ill)

= MATH 221/223 (Matrix Algebra/Linear Algebra)



Course Structure

45% programming projects

=« 9% project 1 (building beasties with cubes and math)
= 9% project 2 (flying )

= 9% project 3 (shaded terrain)

=« 18% project 4 (create your own graphics game)
25% final

15% midterm (week 4, Tue 5/31)

15% written assignments

= 5% each HW 1/2/3

programming projects and homeworks synchronized
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Programming Projects

s Structure
= C++, Linux
= OK to cross-platform develop on Windows
= OpenGL graphics library
= GLUT for platform-independent windows/UI
= face to face grading in lab
= Hall of Fame
= project 1: building beasties
= previous years: elephants, birds, poodles
= project 4: create your own graphics game



Late Work

= 3 grace days

« for unforeseen circumstances

= strong recommendation: don’t use early in term

« handing in late uses up automatically unless you tell us
= otherwise: 25% per 24 hours

= No work accepted after solutions handed out
= exception: severe illness or crisis, as per UBC rules

= let me know ASAP (in person or email)

=« must also turn in form with documentation
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005/illness.html



Regrading

= t0 request assignment or exam regrade

= must submit detailed written explanation of
why you think the grader was incorrect for the
particular problem that you are disputing

= | may regrade entire assignment

= thus even if | agree with your original request,
your score may end up higher or lower



Course Information

= course web page is main resource
s http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
= updated often, reload frequently
= Newsgroup is ubc.courses.cpsc.414
= note old course number still used
= readable on or off campus
o (no WebCT)




Labs

= attend two labs per week, 3 sessions each
« Tue/Thu 11-12, 3-4, 4-5
= Thursday afternoon better than Thu morning

= Tuesdays: example problems in spirit of
written assignments and exams

= Thursdays: help with programming projects
= no deliverables
= strongly recommend that you attend



Teaching Staff

s Instructor: Dr. Munzner

s Imm@cs.ubc.ca

= Office hrs in CICSR 011
= Mon 4:30-5:30

= TAs: Warren Cheung, Greg Kempe
s Wcheung@cs.ubc.ca
s Kempe@cs.ubc.ca

= Use newsgroup not email for all questions
that other students might care about
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Required Reading

= Fundamentals of Computer Graphics
= Peter Shirley, AK Peters

= OpenGL Architecture Review Board
a V 1.1 available for free online

= readings posted on schedule page
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Learning OpenGL

= this is a graphics course using OpenGL
= not a course *on* OpenGL

= upper-level class: learning APIs mostly on
your own

= only minimal lecture coverage
= basics, some of the tricky bits

= OpenGL Red Book

= many tutorial sites on the web
= Nnehe.gamedev.net
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Plagiarism and Cheating

= don’t cheat, | will prosecute
= insult to your fellow students and to me

= programming and assignment writeups must be
individual work

= exception: project 3 can be team of two
= can discuss ideas, browse Web
= but cannot just copy code or answers
= you must be able to explain algorithms during face-to-
face demo

= Or no credit for that part of assignment, possible
prosecution
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Citation

= cite all sources of information
= Web sites, study group members, books
= README for programming projects

= end of writeup for written assignments
= http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/policies.himl#plag
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What is Computer Graphics?

= create or manipulate images with computer
= this course: algorithms for image generation




What is CG used for?

= graphical user interfaces
= modeling systems
= applications

= Simulation & visualization

------
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What is CG used for?

= MOVIeS
= animation
= special effects
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What is CG used for?

= computer games

P I/}

EXiFFlEME G RACING

PIayStanon c
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What is CG used for?

= Images
= design
= advertising
= art
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What is CG used for?

= Vvirtual reality / immersive displays
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Real or CG?

http://www.alias.com/eng/etc/takeorfoto/quiz.html
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Real or CG?
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Real or CG?
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Real or CG?
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This Course

m We cover
= basic algorithms for
= rendering — displaying models
= (modeling — generating models)
= (animation — generating motion)
= programming in OpenGL, C++
= we do not cover
= art/design issues
= commercial software packages
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Other Graphics Courses

s CPSC 424: Geometric Modeling
s CPSC 426: Computer Animation

s CPSC 514: Image-based Modeling and
Rendering

s CPSC 526: Computer Animation

s CPSC 533A: Digital Geometry

s CPSC 533B: Animation Physics

s CPSC 533C: Information Visualization

26



Rendering

= creating images from models
= geometric objects
= lines, polygons, curves, curved surfaces
= camera
= pinhole camera, lens systems, orthogonal
= shading
= light interacting with material

= Pixar Shutterbug series

« Williams and Siegel using Renderman, 1990
= www.siggraph.org/education/ materials/HyperGraph/shutbug.htm
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Modelling Transformation: Object Placement
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Viewing Transformation: Camera Placement
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Perspective Projection

30



Depth Cueing
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Depth Clipping
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Colored Wireframes
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Hidden Line Removal
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Hidden Surface Removal
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Per-Polygon Shading
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Gouraud Shading
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Specular Reflection
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ing

Phong Shad
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Curved Surfaces
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Complex Lighting and Shading
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Texture Mapping
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Displacement Mapping
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Reflection Mapping
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Modelling

= generating models
= lines, curves, polygons, smooth surfaces
= digital geometry
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Animation

= generating motion
= Interpolating between frames, states
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Math Review
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Reading

s FCG Chapter 2: Miscellaneous Math
= except for 2.11 (covered later)
= Skim 2.2 (sets and maps), 2.3 (quadratic egns)

= important: 2.3 (trig), 2.4 (vectors), 2.5-6 (lines)
2.10 (linear interpolation)

= Skip 2.5.1,2.5.3,2.7.1, 2.7.3, 2.8, 2.9
s FCG Chapter 4.1-4.25: Linear Algebra
= Skim 4.1 (determinants)

= important: 4.2.1-4.2.2, 4.2.5 (matrices)
= SKip 4.2.3-4, 4.2.6-7 (matrix numerical analysis)
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Textbook Errata

m list at http://www.cs.utah.edu/~shirley/fcg/errata

= p 29, 32, 39 have potential to confuse
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Notation: Scalars, Vectors, Matrices

= scalar a
= (lower case, italic)

= vector a = [al a, .. an]
= (lower case, bold)

= matrix _ _
= (upper case, bold) a,, d,, dgj

A=|a, ay, ay
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Vectors

= arrow: length and direction
= oriented segment in nD space

= Offset / displacement

= location if given origin
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Column vs. Row Vectors

= rOw vectors a_ = [al a, .. an]
_al _
= column vectors
a,
acol —
an

= switch back and forth with transpose
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Vector-Vector Addition

s add: vector + vector = vector

= parallelogram rule
= tail to head, complete the triangle

geometric

examples:

algebraic
u, +v,

u+v=|u,+v,

(3,2)+(6,4) =(9,6)
(2,5,1)+(3,1,—1) =(5,6,0)
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Vector-Vector Subtraction

s Subtract: vector - vector = vector

\Y

(3,2)—(6,4) =(—3,-2)

u —v

U, —Vv,

Uz — V3

(2,5,1)-(3,1,-1) =(-1,4,0)
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Vector-Vector Subtraction

s Subtract: vector - vector = vector

u+(—v)

argument reversal

(3,2)—(6,4) =(—3,-2)
(2,5,1)-(3,1,-1) =(-1,4,0)

u —v

U, —Vv,

Uz — V3




Scalar-Vector Multiplication

= multiply: scalar * vector = vector
= vector is scaled

““““ a*u=(@*u,a*u,,a*u,)

2%(3,2)=(6,4)
S*(2,5,1)=(1,2.5,.5)
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Vector-Vector Multiplication

= multiply: vector * vector = scalar
= dot product, aka inner product uev

u, |® v, =(”1>I<V1)‘|'(”1*Vz)"'(%*V3)
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Vector-Vector Multiplication

= multiply: vector * vector = scalar
= dot product, aka inner product uev

u, |® v, =(”1*"'1)"'(”1*Vz)"'(%*"’3)

o | uev= HuHHVH cos @
= geometric interpretation

= lengths, angles u
= can find angle between two 2
vectors Vv
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Dot Product Geometry

= can find length of projection of u onto v

vl
nev 6 |
A%

HuHcos 6 = ¢ ¢

HVH HuHcosH
= as lines become perpendicular,

uev—(

[T

ot \ o g 4 59



Dot Product Example

:(ul >I<"1)‘|'(”1 *V2)+(u3 >I<"3)

=O*D+dA*7)+(2%*3)=6+7+6=19
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Vector-Vector Multiplication, The Sequel

= multiply: vector * vector = vector

= Cross procljuct w, | (v, ] [uy, —u,
= algebraic w, (x| v, | =] uy, —uv,
= geometric Us | [ Vs ] [WVo TURYY

b
faxb|=Jullvjsine | "

axb| parallelogram

area b
= axb perpendicular \
to parallelogram \\
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RHS vs LHS Coordinate Systems

= right-handed coordinate system

7z right hand rule:
index finger x, second finger y;
'<>v right thumb points up
X
y Z=XXYy

= |left-handed coordinate system

left hand rule:

index finger x, second finger y;

left thumb points down

Z=XXYy
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Basis Vectors

= take any two vectors that are linearly
iIndependent (nonzero and nonparallel)

= can use linear combination of these to define
any other vector:

c=wa+w,b
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Orthonormal Basis Vectors

= if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)

= we have Cartesian coordinate system
= familiar Pythagorean definition of distance

orthonormal algebraic properties A
el =yl =1. Y
xey =0 >

X
o ¥ 0.5Y
TR
2X >
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Basis Vectors and Origins

= coordinate system: just basis vectors
= can only specity offset: vectors

= coordinate frame: basis vectors and origin
= can specify location as well as offset: points

p=0-+xi+ V)

65



Working with Frames

P =0+xi+ y]

F,
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Working with Frames

P =0+xi+ y]

Ho

P = (35'1 )
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Working with Frames

P =0+xi+ y]

J P = (3!'1)
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Working with Frames

P =0+xi+ y]

J P = (35'1)

p = (-1.5,2)
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Working with Frames

P =0+xi+ y]
jA
0 i .p
1__‘.J P= (35'1)
i|0 /

p = (-1.5,2)
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Working with Frames

pP=0+xi+ y]
jA
()] i .p
1__‘.J P= (35'1)
e 1/ 0 = (-1.5,2)

i p=(1,2)
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Named Coordinate Frames

= origin and basis vectors P =0+ax+by+cz

= pick canonical frame of reference
= then don't have to store origin, basis vectors
= jJust p=(a,b,c)

= convention: Cartesian orthonormal one on
previous slide

= handy to specify others as needed
= airplane nose, looking over your shoulder, ...

= really common ones given names in CG
= Object, world, camera, screen, ...
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Lines

= slope-intercept form by 0
sy=mx+Db
= iImplicit form
sy—mx—-b=0 R=a
s Ax+By+C=0
f(x,y)=y-mx-b
= f(xy) =0 m = -b/a
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Implicit Functions

= find where functionis 0
= plug In (x,y), check if
= 0: on line
= < 0:inside
= > 0: outside
= analogy: terrain
= sea level: =0

= altitude: function value
= topo map: equal-value

contours (level sets)
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Implicit Circles
s fny)=(x=x) +(y=y) —r
= circle is points (x,y) where f(x,y) =0
= p=(x,y),c=(x,y):(p—c)e(p—c)—r" =0
= points p on circle have property that vector
from ¢ to p dotted with itself has value 2
« [p—c~r* =0
= points points p on the circle have property
that squared distance from ¢ to p is r?
. p-¢f -r=0
= points p on circle are those a distance rfrom
center point ¢ 75



Parametric Curves

= parameter: index that changes continuously

= (X,y): point on curve
= {: parameter

= vector form

= p=fQ)

X

Y

g(t)

h(D)_
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X

na

= p(t)=p,+1(P, —P,)
s p(#)=0+1(d)

= start at point p,
go towards p;,
according to parameter t

= P(0) = Py, P(1) = P4

2D Parametric Lines

X+ (X, — Xx,)

Vo T t(yl _Y())_




Linear Interpolation

= parametric line is example of general concept
= p(t) =p, +1(P; —Py)
= Interpolation

= p goes throughaatt=0
= p goes through b at t =1

= liInear
= weights ¢, (1-1) are linear polynomials in t
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Matrix-Matrix Addition

s add: matrix + matrix = matrix

my  mp
My Ny, |
= example
g _

_I_
2

7

1

s

n,+m,

Ny +m,,

1+(-2) 3+5

2+ 4+1

n,+m,

Ny T My, |

-1 8
9 5
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= multiply: sca

a

Scalar-Matrix Multiplication

my, mp

My, Ny, |

= example

s

3%

(3%D  3%4

ES
a*m,,

S
_Cl m,,

3%5

K
a“m,,

ar * matrix = matrix

K
a mzz_
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Matrix-Matrix Multiplication

= r'OW by column

my, My | 1y, Pri

Ry} Ny, | Poi

My, Ny, |

Py = myny +mpn,,

P12
P2
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Matrix-Matrix Multiplication

= r'OW by column
m m

m,, N,

P11

o

Py = myny +mpn,,

Doy = My Ny T My,

P12
P2
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Matrix-Matrix Multiplication

= r'OW by column

my, mp

My Ny, ||

P11
P

Py = myny +mpn,,

Doy = My Ny T My,

P, = mny, + mpyn,,

P12

P
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Matrix-Matrix Multiplication

= r'OW by column

my,

My || Ny 11, Pri

My Myl My |y, Poi

Py = myny +mpn,,
Doy = My Ny T MpN,,
P, = myny, + mpyn,,

Doy =My Ny, + My,

P12 )

P2
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Matrix-Matrix Multiplication

= row by column

my,  my, |y |1y, Pri

My Myl My |y, Poi

Py = My 1y + MmNy,

Py = My iy T My,

D1y =My iy, T 1,1,

Py = My Ny, + Ny,
= noncommutative: AB = BA

P12 )

P2
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Matrix Multiplication

= can only multiply if
number of left rows = number of right cols

= legal _ _
a b c

e f 8.

= undefined i )
a b c
e f g

o P g
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Matrix-Vector Multiplication

= points as column vectors: postmultiply

= points as row vectors: premultiply

[x

y!

_x'_
y!
Z!

h!

Z!

nl=lx y z ]

e
Y
Z

p'=Mp

T
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Matrices

— _T —

] transpose my, my, m; my my,
My My My Moy || Ty
My My My Mgy M5
| My My, My My, | | Ty
= identity OO0
O 1 0 O
O 01 O
0 0 0 1]

= inverse AA7 =1
= not all matrices are invertible
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Matrices and Linear Systems

= linear system of n equations, n unknowns
3Ix+T7y+2z=4
2x—4y—-3z=-1
Sx+2y+z=1

= matrix form Ax=b

3 7 2 | x 4
2 -4 =3|y
5 2 1 || z —1

ll
I
ek




Rendering Pipeline
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Reading

= RB Chap. Introduction to OpenGL

= RB Chap. State Management and Drawing
Geometric Objects

= RB Appendix Basics of GLUT
= (Basics of Auxinv 1.1)
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Rendering

= goal
« transform computer models into images
= may or may not be photo-realistic
= Interactive rendering
= fast, but limited quality
= roughly follows a fixed patterns of operations
= rendering pipeline
= Offline rendering
= ray-tracing
= global illumination
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Rendering

= tasks that need to be performed

(in no particular order):

= project all 3D geometry onto the image plane
= geometric transformations

= determine which primitives or parts of primitives are

visible

= hidden surface removal

« determine which pixels a geometric primitive covers
= SCan conversion

« compute the color of every visible surface point
=« lighting, shading, texture mapping
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Rendering Pipeline

= what is the pipeline?
« abstract model for sequence of operations to
transform geometric model into digital image
= abstraction of the way graphics hardware works

= underlying model for application programming
interfaces (APIs) that allow programming of graphics
hardware

=« OpenGL
= Direct 3D

= actual implementation details of rendering pipeline
will vary
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Rendering Pipeline

Geomers || Modetow

Database Transform. Lighting

Scan

Conversion || TeXturing Blending
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Geometry Database

Geometry

Database

= geometry database

= application-specific data structure for
holding geometric information

= depends on specific needs of application

=« triangle soup, points, mesh with connectivity
information, curved surface
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Model/View Transformation

Geometry Model/View

Database Transform.

= modeling transformation

= map all geometric objects from local coordinate
system into world coordinates

= Viewing transformation

= map all geometry from world coordinates into
camera coordinates o7



Lighting

Geometry Model/View

Database Transform. Lighting

= lighting
= compute brightness based on property of
material and light position(s)

= computation is performed per-vertex
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Perspective Transformation

Geometry Model/View Perspective

Lighting

Database Transform. Transform.

= perspective transformation
= projecting the geometry onto the image plane

= projective transformations and model/view
transformations can all be expressed with 4x4
matrix operations
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Clipping

Geometry Model/View Perspective

Lighting

Database Transform. Transform. [] ClPPINg

= Clipping
= removal of parts of the geometry that fall
outside the visible screen or window region

= Mmay require re-tessellation of geometry
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Texture Mapping

Geometry Model/View <y Perspective o
Database Transform. Lighting Transform. Clipping

Scan
Conversion

Texturing

= texture mapping
= “gluing images onto geometry”

= color of every fragment is altered by
looking up a new color value from an
iImage
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Depth Test

Model/View
Transform.

Perspective
Transform.

Geometry
Database

] Scan . | Depth |
Conversion Texturing Test

= depth test

= remove parts of geometry hidden behind
other geometric objects

= perform on every individual fragment
= other approaches (later) 102

Lighting — Clipping




Pipeline Advantages

= modularity: logical separation of different components
= easy to parallelize

« earlier stages can already work on new data while later
stages still work with previous data

= similar to pipelining in modern CPUs

= but much more aggressive parallelization possible
(special purpose hardware!)

« Important for hardware implementations
= only local knowledge of the scene is necessary
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Pipeline Disadvantages

= limited flexibility

= sSome algorithms would require different

ordering of pipeline stages

= hard to achieve while still preserving
compatibility

= only local knowledge of scene is available

= Sshadows

= global illumination
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OpenGL (briefly)
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OpenGL

= started in 1989 by Kurt Akeley
= based on IRIS_GL by SGi

= APl to graphics hardware

= designed to exploit hardware optimized for
display and manipulation of 3D graphics

= Implemented on many different platforms
= low level, powerful flexible
= pipeline processing

= Set state as needed
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Graphics State

= Set the state once, remains until overwritten
= glColor3f(1.0, 1.0, 0.0)
= glSetClearColor(0.0, 0.0, 0.2)
= glEnable(LIGHTO)
= glEnable(GL_DEPTH_TEST)
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Geometry Pipeline

= tell it how to interpret geometry
« glBegin(<mode of geometric primitives>)
= mode = GL_TRIANGLE, GL_POLYGON, etc.

= feed it vertices
« glVertex3f(-1.0, 0.0, -1.0)
« glVertex3f(1.0, 0.0, -1.0)
« glVertex3f(0.0, 1.0, -1.0)

= tell it you're done
= glEnd()
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Open GL: Geometric Primitives

[

wike [ 3l
vie my2

GL_POINTS

GL_LINES

N

Vi ¥
GL_TRIANGLES

Vb
 rd
v
wr

GL_CQUALS

glPointSize( float size);
glLineWidth( float width);
glColor3f( float r, float g, float b);

e
<X,

GL_LINE_STRIP

vl v vd
'rll/\-ugd
vE

GL_TRIAMGLE_STRIP

wr
Wi
.ﬁﬂ v

GL_QuAD_STRIP

w5
"”M
' | vi

GL_LINE_LOOF
v
‘ ;'ﬂ
ﬂ
wd
GL_THIANGLE_FAN
vl

V!

)
GL_POLYGON
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Code Sample

void display ()
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER BIT);
glColor3£(0.0, 1.0, 0.0);
glBegin (GL_POLYGON) ;
glVertex3f(0.25, 0.25, -0.5);
glVertex3f£(0.75, 0.25, -0.5);
glVertex3f£(0.75, 0.75, -0.5);
glVertex3f(0.25, 0.75, -0.5);
glEnd() ;
glFlush();

= more OpenGL as course continues
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GLUT
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GLUT: OpenGL Utility Toolkit

= developed by Mark Kilgard (also from SGl)
= simple, portable window manager
= opening windows
» handling graphics contexts
= handling input with callbacks
= keyboard, mouse, window reshape events
= timing
= idle processing, idle events
= designed for small-medium size applications

= distributed as binaries
= free, but not open source 12



GLUT Draw World

int main(int argc, char **argv)

{
glutInit ( &argc, argv );
glutInitDisplayMode ( GLUT_RGB |

GLUT DOUBLE | GLUT_DEPTH);

glutInitWindowSize( 640, 480 );
glutCreateWindow( "openGLDemo" );
glutDisplayFunc( DrawWorld );
glutIdleFunc (Idle);
glClearColor( 1,1,1 );
glutMainLoop () ;

return O; // never reached
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Event-Driven Programming

= main loop not under your control
= VS. procedural
= control flow through event callbacks
= redraw the window now
= key was pressed
= Mouse moved

= callback functions called from main loop
when events occur

= mouse/keyboard state setting vs. redrawing
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GLUT Callback Functions

// you supply these kind of functions

void reshape (int w, int h);

void keyboard (unsigned char key, int x, int y);
void mouse (int but, int state, int x, int y);
void idle();

void display();

// register them with glut

glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyboard) ;
glutMouseFunc (mouse) ;
glutIdleFunc (idle);
glutDisplayFunc (display) ;

void glutDisplayFunc (void (*func) (void));
void glutKeyboardFunc (void (*func) (unsigned char key, int x, int y));
void glutIdleFunc (void (*func) ());

void glutReshapeFunc (void (*func) (int width, int height)); s



Display Function

void DrawWorld() {

glMatrixMode ( GL_PROJECTION ) ;
glLoadIdentity () ;

glMatrixMode ( GL_MODELVIEW );
glLoadIdentity () ;

glClear ( GL_COLOR_BUFFER BIT ) ;

glutSwapBuffers () ;
}

= directly update value of angle variable
= SO, why doesn't it spin?
= only called in response to window/input event!
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Idle Function

void Idle () {
angle += 0.05;
glutPostRedisplay () ;
}

= called from main loop when no user input
= should return control to main loop quickly
= update value of angle variable here

= then request redraw event from GLUT
= draw function will be called next time through

s continues to rotate even when no user action
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Keyboard/Mouse Callbacks

= do minimal work
= request redraw for display

= example: keypress triggering animation
= do not create loop in input callback!
= What if user hits another key during animation?
= Shared/global variables to keep track of state
= display function acts on current variable value
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Labs
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Thursday Lab

= labs start Thursday

= 11-12: morning not ideal, it's before lecture

= 3-4,4-5: better, try to attend afternoon if possible
= project 0

= make sure you can compile OpenGL/GLUT

= useful to test home computing environment
= template: spin around obj files
= todo: change rotation axis

= do not hand in, not graded
= http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/a0

= project 1
= transformations
= more on Thursday after transformations lecture
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Remote Graphics

= OpenGL does not work well remotely
= very slow

= only one user can use graphics at a time

= current X server doesn'’t give priority to console, just
does first come first served

= problem: FCFS policy = confusion/chaos
= solution: console user gets priority

« only use graphics remotely if nobody else logged on
« With ‘who’ command, “:0” is console person

= stop using graphics if asked by console user via emalil
= Or console user can reboot machine out from under you
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