|¥§$ University of British Columbia
= CPSC 314 Computer Graphics
May-June 2005

Tamara Munzner
Intro, Math Review, OpenGL Pipeline

Week 1, Tue May 10

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Introduction

Expectations

= hard course!
= heavy programming and heavy math
= fun course!
= graphics programming addictive, create great demos
= programming prereq
»« CPSC 216 (Program Design and Data Structures)
= course language is C++/C
= math prereq
=« MATH 200 (Calculus Il1)
= MATH 221/223 (Matrix Algebra/Linear Algebra)

Course Structure

= 45% programming projects
= 9% project 1 (building beasties with cubes and math)
= 9% project 2 (flying)
= 9% project 3 (shaded terrain)
= 18% project 4 (create your own graphics game)
» 25% final
= 15% midterm (week 4, Tue 5/31)
= 15% written assignments
= 5% each HW 1/2/3
= programming projects and homeworks synchronized

4

Programming Projects

= structure
= C++, Linux
= OK to cross-platform develop on Windows
= OpenGL graphics library
= GLUT for platform-independent windows/UlI
= face to face grading in lab
= Hall of Fame
= project 1: building beasties
= previous years: elephants, birds, poodles
= project 4: create your own graphics game

Late Work

= 3 grace days

= for unforeseen circumstances

= strong recommendation: don’t use early in term

» handing in late uses up automatically unless you tell us
= otherwise: 25% per 24 hours

= no work accepted after solutions handed out
= exception: severe iliness or crisis, as per UBC rules

= let me know ASAP (in person or email)

= must also turn in form with documentation
http:/mwww.ugrad.cs.ubc.ca/~cs314/Vjan2005/iliness.html

Page 1

Regrading

= to request assignment or exam regrade
= must submit detailed written explanation of
why you think the grader was incorrect for the
particular problem that you are disputing
= | may regrade entire assignment
= thus even if | agree with your original request,
your score may end up higher or lower

Course Information

= course web page is main resource
= hitp://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
= updated often, reload frequently
= newsgroup is ubc.courses.cpsc.414
= note old course number still used
= readable on or off campus
= (no WebCT)

Labs

= attend two labs per week, 3 sessions each
= Tue/Thu 11-12, 3-4, 4-5
= Thursday afternoon better than Thu morning

= Tuesdays: example problems in spirit of
written assignments and exams

= Thursdays: help with programming projects
= no deliverables
= strongly recommend that you attend

Teaching Staff

= instructor: Dr. Munzner
= Imm@cs.ubc.ca
= office hrs in CICSR 011
= Mon 4:30-5:30
= TAs: Warren Cheung, Greg Kempe
= wcheung@cs.ubc.ca
= kempe@cs.ubc.ca
= use newsgroup not email for all questions
that other students might care about

Required Reading

. Fundamentals of Computer Graphics
= Peter Shirley, AK Peters

= OpenGL Architecture Review Board
= v 1.1 available for free online

= readings posted on schedule page

Learning OpenGL

= this is a graphics course using OpenGL
= not a course *on* OpenGL
= upper-level class: learning APIs mostly on
your own
= only minimal lecture coverage
= basics, some of the tricky bits
= OpenGL Red Book
= many tutorial sites on the web
= nehe.gamedev.net

Page 2

Plagiarism and Cheating

= don’t cheat, | will prosecute
= insult to your fellow students and to me

= programming and assignment writeups must be
individual work
= exception: project 3 can be team of two
= can discuss ideas, browse Web
= but cannot just copy code or answers

= you must be able to explain algorithms during face-to-
face demo

= or no credit for that part of assignment, possible
prosecution

Citation

= cite all sources of information
= web sites, study group members, books
= README for programming projects

= end of writeup for written assignments
= http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/policies.html#plag

What is Computer Graphics?

= create or manipulate images with computer
= this course: algorithms for image generation

What is CG used for?

= graphical user interfaces
= modeling systems
= applications

= simulation & visualization

What is CG used for?

= movies
= animation
= special effects

What is CG used for?
PlayStation.2
e =

= computer games

What is CG used for?
L\ 1

= images
= design
= advertising
= art

What is CG used for?

= virtual reality / immersive displays

Real or CG?

http://www.alias.com/eng/etc/fakeorfoto/quiz.html

(1]

Real or CG?

Real or CG?

Real or CG?

This Course

= We cover
= basic algorithms for
= rendering — displaying models
= (modeling — generating models)
= (animation — generating motion)
= programming in OpenGL, C++
= we do not cover
= art/design issues
= commercial software packages

Other Graphics Courses

= CPSC 424: Geometric Modeling
= CPSC 426: Computer Animation

= CPSC 514: Image-based Modeling and
Rendering

= CPSC 526: Computer Animation

= CPSC 533A: Digital Geometry

= CPSC 533B: Animation Physics

= CPSC 533C: Information Visualization

Rendering

= creating images from models
= geometric objects
= lines, polygons, curves, curved surfaces
= camera
= pinhole camera, lens systems, orthogonal
= shading
= light interacting with material
= Pixar Shutterbug series

= Williams and Siegel using Renderman, 1990
= www.siggraph.org/education/ materials/HyperGraph/shutbug.htm

Modelling Transformation: Object Placement

Viewing Transformation: Camera Placement

/]|

Perspective Projection

Depth Cueing

Depth Clipping

Colored Wireframes

Hidden Line Removal

Hidden Surface Removal

Gouraud Shading Specular Reflection

Curved Surfaces

Complex Lighting and Shading Texture Mapping

41 42

Page 7

Displacement Mapping

43

Reflection Mapping

Modelling

= generating models
= lines, curves, polygons, smooth surfaces

= digital geometry
F l ‘

'

45

Animation

= generating motion
= interpolating between frames, states

Math Review

47

Reading

= FCG Chapter 2: Miscellaneous Math
= except for 2.11 (covered later)
= skim 2.2 (sets and maps), 2.3 (quadratic eqns)
= important: 2.3 (trig), 2.4 (vectors), 2.5-6 (lines)
2.10 (linear interpolation)
= skip2.5.1,25.3,2.7.1,2.7.3,2.8,2.9
= FCG Chapter 4.1-4.25: Linear Algebra
= skim 4.1 (determinants)
= important: 4.2.1-4.2.2, 4.2.5 (matrices)
= skip 4.2.3-4, 4.2.6-7 (matrix numerical analysi%}

Page 8

Textbook Errata

= list at http://www.cs.utah.edu/~shirley/fcg/errata
= p 29, 32, 39 have potential to confuse

49

Vectors

= arrow: length and direction
= oriented segment in nD space

= offset / displacement

= location if given origin

Notation: Scalars, Vectors, Matrices

= scalar a
= (lower case, italic)

= vector a =
= (lower case, bold)

= matrix
= (upper case, bold) a,

Column vs. Row Vectors

=rowvectors a_ =[a, a, .. a]
a,
= column vectors
a,
acol =
a

n

= switch back and forth with transpose

Vector-Vector Addition

= add: vector + vector = vector

= parallelogram rule
= tail to head, complete the triangle

geometric algebraic
u+v = u, +v
o u+v=|u,+v,
N Uy +v,
3,2)+(6,4)=(9,6
examples: (32)+(6:H=0.6)

2,5)+@3,1,-1)=(5,6,0)

Vector-Vector Subtraction

= subtract: vector - vector = vector uw, —v

(32)-(6,4)=(-3-2)
2,5)-(G,L-1)=(-1,4,0)

u+(—-v)

Pag

e9

Vector-Vector Subtraction

= subtract: vector - vector = vector u, —v
1 1

_ (3,2)—(6,4)=(-3-2)
T 2,51)—(3,1,-1)=(-1,4,0)
u+(—v)

argument reversal

Vector-Vector Multiplication

= multiply: vector * vector = scalar

= dot product, aka inner product uev

u, Y
U, |®| v, =(”|*V|)+(”|*Vz)+(u3*"3)

Uy V3

Dot Product Geometry

= can find length of projection of u onto v

w7
0 |
v

uev —
HVH Jul|cos &

= as lines become perpendicular,
uev—0

uev= ||u||||v|| cos @

= multiply: scalar * vector = vector
= vector is scaled

Scalar-Vector Multiplication

a*u=(a*u,a*u,,a*u,)

K
s

2%(3,2)=(6,4)
S5*(2,51)=(1,25,.5)

= multiply: vector * vector = scalar
= dot product, aka inner product

= geometric interpretation

Vector-Vector Multiplication

uey

u, Y
U, |®| v, =(”|*V|)+(”|*Vz)+(u3*"3)

we v =[uf|vcos 8

= lengths, angles

u :‘
= can find angle between two ()

vectors v

Dot Product Example

u, v,
U, |®| v, =(”|*V|)+(”|*Vz)+(u3*"3)

1
1
|
— - 3

Uy V3
6] [1
1|e|7|=6*D+A*7)+(2*3)=6+7+6=19
2113
Page 10

10

Vector-Vector Multiplication, The Sequel

= multiply: vector * vector = vector

= Ccross product u, v, PRI
=« algebraic _
9 Uy |X| vy [=] Uz, —uy vy
i u vV uyv, — U,V
= geometric 3 3 Vo~V
axb

[axb]=[uljjv]sine

= |axb| parallelogram
area

= axb perpendicular
to parallelogram

61

Basis Vectors

= take any two vectors that are linearly
independent (nonzero and nonparallel)
= can use linear combination of these to define
any other vector:

c=wa+wb

63

RHS vs LHS Coordinate Systems

= right-handed coordinate system

z right hand rule:
index finger x, second finger y;
right thumb points up
y X

Z=XXYy
= left-handed coordinate system

left hand rule:
index finger x, second finger y;
left thumb points down

Z=XXYy

62

Orthonormal Basis Vectors

= if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)

= we have Cartesian coordinate system
= familiar Pythagorean definition of distance

orthonormal algebraic properties
Ix =yl =1,
xey=0

y

X
05
_2K X
c=— z 0.5y
2x

Basis Vectors and Origins

= coordinate system: just basis vectors
= can only specify offset: vectors

= coordinate frame: basis vectors and origin
= can specify location as well as offset: points

p =o0+xi+ yj

65

Working with Frames

p =0+xi+ yj

Page 11

11

Working with Frames

p =0+xi+ yj

F1 p= (35'1)

67

Working with Frames

p =0+xi+ yj
Jb
(1] i P
F1j F1 p=(3!'1)
ilo

2

Working with Frames

p =0+xi+ yj
g
(1] i P
F1j F1 p=(3!'1)
L F, p=(15.2)

69

Working with Frames

p =0+xi+ yj
5
(1] i p
F1j F1 p=(3!'1)
A B p=(152)
o F3

Working with Frames

p =0+xi+ yj
3
(1] i P
F1j F1 p=(3!'1)
R F. p=(152)
Blo F. p=(1,2)

Named Coordinate Frames

= origin and basis vectors P=0+ax+by+cz
= pick canonical frame of reference
= then don’t have to store origin, basis vectors
= just p=(a,b,c)
= convention: Cartesian orthonormal one on
previous slide
= handy to specify others as needed
= airplane nose, looking over your shoulder, ...
= really common ones given names in CG
= Object, world, camera, screen, ... 72

Page 12

12

Lines

= slope-intercept form
sy=mx+b

= implicit form
sy—mx—-b=0 X=a | "¢
=« Ax+By+C=0
= f(x,y) =0

f(x,y)=y-mx-b
m =-b/a

Implicit Functions

= find where function is 0 f
= plug in (x,y), check if ﬁ
= 0:0n line
= < 0: inside
= > 0: outside
= analogy: terrain y

= sea level: f=0 f(xy)=0
= altitude: function value X
= topo map: equal-value

contours (level sets)

Implicit Circles
s Sy =(x—x) +(y-y) -1
= circle is points (x,y) where f(x,y) = 0
= p=(xy),c=(x,y.):(p-c)*(p-0)-r’=0
= points p on circle have property that vector
from c to p dotted with itself has value r2
“lp=df' - =0
= points points p on the circle have property
that squared distance from ¢ to p is r?
<[p- ~r=0
= points p on circle are those a distance r from
center point ¢ 75

Parametric Curves

= parameter: index that changes continuously
= (X,y): point on curve {x} {g(;)}
= {: parameter y h(t)
= vector form

= p=f(

2D Parametric Lines

{x} _{xo +t(x, — xO)J
1 e+t =)
= P(f)=Po+f(P|_Po)
= p(t)=o0+1(d)

= start at point p,
go towards p;,
according to parameter t

= p(0) = Po. P(1) = Py

Linear Interpolation

= parametric line is example of general concept
= p(1) =Py +1(p, _po)
= interpolation
= p goes througha at t=0
= p goes through b at t =1
= linear
= weights ¢, (1-1) are linear polynomials in t

Page 13

13

Matrix-Matrix Addition

= add: matrix + matrix = matrix
|:m11 m12:|+|:n11 n12:|_|:n11+m11
le m22 nZl n22 nZl +m21

= example

13 [-2 s]_[1+2 3+45)_[-1
2 4|7 1] | 247 4+1] |9

My, + 1y, j|
Ty + 1y

y

Matrix-Matrix Multiplication

= row by column
mll ’/n'IZJ nll n121|_ pll p121|
le m22 n21 n22 _p21 p22

Dy =my iy, +my,ny,

Scalar-Matrix Multiplication

= multiply: scalar * matrix = matrix

* *
a|:m11 mlzj|_|:a m, a mlzj|
* *
m,, Ny, arm, a“m,,

= example

32 4] [3%2 3%4] [6 12
1 5| [3%1 3*%5| |3 15

Matrix-Matrix Multiplication

= row by column

my, leJ\‘nll ny

My My || Ny | N

:|:p11 P

Dy =my iy, +my,ny,
Doy =My 1y + My,
P =1y Ry, + My, 1y,

P P |

83

80
Matrix-Matrix Multiplication
= row by column
my le—J ny, n121|_ P p121|
my My || 21| M | Po1| P
Dy =my iy, +my,n,,
Doy =My 1y +my,n,,
82
Matrix-Matrix Multiplication
= row by column
my, m12}|:n11 ny, _|:p11 P
My Myl Ny | N2 P | P
Dy =mynyy +my,n,,
Doy =My 1y + 1,1,
Dy =My iy, +my,n,,
Dy =My 1y, + 1My,
84
Page 14

14

Matrix-Matrix Multiplication

= row by column
my, m12}|:n11 ny
My Myl Ny | N2

Dy =mynyy +myp,n,,

_ |:p11 plz_
P | P

Doy =My 1y +my,n,,
D =my iy, +my,n,,
Dy =My 1y, + 1My,

= noncommutative: AB = BA

85

Matrix Multiplication

= can only multiply if
number of left rows = number of right cols

Matrix-Vector Multiplication

= points as column vectors: postmultiply

myomy, My,

p'=Mp

X
Y My My, My My,
Z

my o My, My My,

B BT

'
h My My, My My,

= points as row vectors: premultiply

T
My Ny, My My

ey 2 owl=lk oy oz ok My M Mo Moy p'T:pTMT
My My Mgy Ty,

My My My Ty,

Matrices and Linear Systems

= linear system of n equations, n unknowns
3x+7y+2z=4
2x—4y-3z=-1
Sx+2y+z=1

= matrix form Ax=b
37 2 |«x 4
2 -4 -3|y|=|-1
5 2 1|z -1

89

« legal Ih i
a b c| .
j k
e [&
) I m
= undefined -
a b c | .
7 h i
e
8 ik
o p q]
86
Matrices
w transpose [m m. my m. | [momyomyom,
My My My My | [My My My My,
m}V m}? m}} m34 - mV} m23 m}} m43
mav maz md} mM mM m}d m}d mM
= identity Lo
0100
0010
0001
= inverse AAT' =1
= not all matrices are invertible
88
Rendering Pipeline
90
Page 15

15

Reading

= RB Chap. Introduction to OpenGL

= RB Chap. State Management and Drawing
Geometric Objects

= RB Appendix Basics of GLUT
= (Basics of Auxin v 1.1)

91

Rendering

= goal
= transform computer models into images
= may or may not be photo-realistic
= interactive rendering
=« fast, but limited quality
= roughly follows a fixed patterns of operations
= rendering pipeline
= offline rendering
= ray-tracing
= global illumination

92

Rendering

= tasks that need to be performed

(in no particular order):

= project all 3D geometry onto the image plane
= geometric transformations

= determine which primitives or parts of primitives are

visible

= hidden surface removal

= determine which pixels a geometric primitive covers
= Scan conversion

= compute the color of every visible surface point
= lighting, shading, texture mapping

93

Rendering Pipeline

= what is the pipeline?
» abstract model for sequence of operations to
transform geometric model into digital image
= abstraction of the way graphics hardware works
= underlying model for application programming
interfaces (APIs) that allow programming of graphics
hardware
= OpenGL
= Direct 3D
= actual implementation details of rendering pipeline
will vary

94

Rendering Pipeline

Geometry Model/View L Perspective _

Database || Transform, [~ Lighting = @ cform. [T CliPPing =H
Scan s Depth . Frame-

Conversion [~ Texturing [— "o " [~ Blending buffer

95

Geometry Database

Geometry
Database

= geometry database

= application-specific data structure for
holding geometric information

= depends on specific needs of application

= triangle soup, points, mesh with connectivity
information, curved surface

9%

Page 16

16

Model/View Transformation

Geometry | | Model/View
Database Transform.

= modeling transformation

= map all geometric objects from local coordinate
system into world coordinates

= viewing transformation

= map all geometry from world coordinates into
camera coordinates 9

Lighting
= lighting

= compute brightness based on property of
material and light position(s)

= computation is performed per-vertex

98

Perspective Transformation

Geometry Model/View
Database | | Transform.

Perspective
Transform.

i
I

Lighting

= perspective transformation
= projecting the geometry onto the image plane

= projective transformations and model/view
transformations can all be expressed with 4x4
matrix operations

9

Clipping
Geometry Model/View . Perspective o
Database || Transform, [~ Lighting = ¢ cform. [T CliPPing
= clipping

= removal of parts of the geometry that fall
outside the visible screen or window region

= may require re-tessellation of geometry

Texture Mapping

Geometry Model/View P Perspective .

Database Transform, [~ Hohting = o cform. [T Clipping =H
Scan 5

Conversion [~ Texturing

Depth Test
Geometry | | Model/View A Perspective A
Database || Transform, [H9htinG |~ 1ranctorm, [CliPping —H
Scan ; Depth
Conversion [7] TeXWANG = “og

= texture mapping

= “gluing images onto geometry”

= color of every fragment is altered by
looking up a new color value from an
image

101

= depth test

= remove parts of geometry hidden behind
other geometric objects
= perform on every individual fragment
= other approaches (later) 102

Page 17

17

Pipeline Advantages

= modularity: logical separation of different components
= easy to parallelize

= earlier stages can already work on new data while later
stages still work with previous data

= similar to pipelining in modern CPUs

= but much more aggressive parallelization possible
(special purpose hardware!)

= important for hardware implementations
= only local knowledge of the scene is necessary

103

Pipeline Disadvantages

= limited flexibility

= some algorithms would require different

ordering of pipeline stages

= hard to achieve while still preserving
compatibility

= only local knowledge of scene is available

= shadows

= global illumination

104

OpenGL (briefly)

105

OpenGL

= started in 1989 by Kurt Akeley
= based on IRIS_GL by SGI
= API to graphics hardware

= designed to exploit hardware optimized for
display and manipulation of 3D graphics

= implemented on many different platforms
= low level, powerful flexible
= pipeline processing

= set state as needed

106

Graphics State

= set the state once, remains until overwritten
= glColor3f(1.0, 1.0, 0.0)
= glSetClearColor(0.0, 0.0, 0.2)
= glEnable(LIGHTO)
= glEnable(GL_DEPTH_TEST)

107

Geometry Pipeline

= tell it how to interpret geometry
= gIBegin(<mode of geometric primitives>)
»« mode = GL_TRIANGLE, GL_POLYGON, etc.

= feed it vertices
= ¢lVertex3f(-1.0, 0.0, -1.0)
= glVertex3f(1.0, 0.0, -1.0)
= glVertex3f(0.0, 1.0, -1.0)

= tell it you're done
= glEnd()

108

Page 18

18

Open GL: Geometric Primitives

.ud

Code Sample

void display()
{

glBegin (GL_POLYGON) ;

glvertex3£(0.25, 0.25, -0.5);
glvertex3£(0.75, 0.25, -0.5);
glvertex3£(0.75, 0.75, -0.5);
glvertex3£(0.25, 0.75, -0.5);
glEnd() ;
glFlush () ;

}
= more OpenGL as course continues

110

g -3
L L glPointSize(float size);
e glLineWidth(float width);
y glColor3f(float r, float g, float b);
s
. -
un/ T —n 0.
w— N‘n N "
GL_LINES GL_LINE_STRIP GL_LINE_LOOP
oy 73 w4 v, 2
v vs
~ 7 B
WB‘E a ! wl va
‘GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRAIANGLE_FAN
. Ve w7
wl vl
2 w|sl o
& v ‘2
L7 3
GL_QUADS GL_QUAD_STRIP GL_POLYGON 109

111

GLUT: OpenGL Utility Toolkit

= developed by Mark Kilgard (also from SGI)
= simple, portable window manager
= opening windows
= handling graphics contexts
= handling input with callbacks
= keyboard, mouse, window reshape events
= timing
= idle processing, idle events
= designed for small-medium size applications
= distributed as binaries
= free, but not open source 112

GLUT Draw World

int main(int argc, char **argv)

{
glutInit (&argc, argv);
glutInitDisplayMode(GLUT_RGB |

GLUT_DOUBLE | GLUT_DEPTH);

glutInitWindowSize(640, 480);
glutCreateWindow("openGLDemo");
glutDisplayFunc(DrawWorld);
glutIdleFunc (Idle);
glClearColor(1,1,1);
glutMainLoop () ;

return 0; // never reached

113

Event-Driven Programming

= main loop not under your control
= VS. procedural
= control flow through event callbacks
= redraw the window now
= key was pressed
= mouse moved

= callback functions called from main loop
when events occur

= mouse/keyboard state setting vs. redrawing

114

Page 19

19

GLUT Callback Functions

// you supply these kind of functions

void reshape(int w, int h);

void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, int x, int y);
void idle();

void display();

// register them with glut

glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyboard) ;
glutMouseFunc (mouse) ;
glutIdleFunc (idle);
glutDisplayFunc (display) ;

void glutDisplayFunc (void (*func) (void));
void glutKeyboardFunc (void (*func) (unsigned char key, int x, int y));
void glutIdleFunc (void (*func)());

void glutReshapeFunc (void (*func) (int width, int height)); 115

Display Function

void DrawWorld() {
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
glClear(GL_COLOR_BUFFER _BIT);

glutSwapBuffers() ;
}
= directly update value of angle variable

= S0, why doesn't it spin?
= only called in response to window/input eveng6

Idle Function

void Idle() {
angle += 0.05;
glutPostRedisplay();
}

= called from main loop when no user input
= should return control to main loop quickly
= update value of angle variable here

= then request redraw event from GLUT
= draw function will be called next time through

= continues to rotate even when no user action

117

Keyboard/Mouse Callbacks

= do minimal work
= request redraw for display
= example: keypress triggering animation
= do not create loop in input callback!
= what if user hits another key during animation?
= shared/global variables to keep track of state
= display function acts on current variable value

118

Labs

119

Thursday Lab

= labs start Thursday
= 11-12: morning not ideal, it's before lecture
= 3-4,4-5: better, try to attend afternoon if possible
= project 0
make sure you can compile OpenGL/GLUT
=« useful to test home computing environment
template: spin around obj files
todo: change rotation axis
do not hand in, not graded
http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/a0
= project 1
= transformations
= more on Thursday after transformations lecture

120

Page 20

20

Remote Graphics

= OpenGL does not work well remotely
= very slow
= only one user can use graphics at a time

= current X server doesn'’t give priority to console, just
does first come first served

= problem: FCFS policy = confusion/chaos
= solution: console user gets priority
= only use graphics remotely if nobody else logged on
= with ‘who’ command, “:0” is console person
= stop using graphics if asked by console user via email
= Or console user can reboot machine out from under you

121

Page 21

21

