
1

Page 1

University of British Columbia
CPSC 314 Computer Graphics

May-June 2005

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005

Intro, Math Review, OpenGL Pipeline

Week 1, Tue May 10

�

Introduction

�

Expectations

� hard course!
� heavy programming and heavy math

� fun course!
� graphics programming addictive, create great demos

� programming prereq
� CPSC 216 (Program Design and Data Structures) 
� course language is C++/C

� math prereq
� MATH 200 (Calculus III) 
� MATH 221/223 (Matrix Algebra/Linear Algebra) 

�

Course Structure
� 45% programming projects

� 9% project 1 (building beasties with cubes and math)
� 9% project 2 (flying )
� 9% project 3 (shaded terrain)
� 18% project 4 (create your own graphics game)

� 25% final
� 15% midterm (week 4, Tue 5/31)
� 15% written assignments

� 5% each HW 1/2/3
� programming projects and homeworks synchronized

�

Programming Projects
� structure

� C++, Linux 
� OK to cross-platform develop on Windows

� OpenGL graphics library
� GLUT for platform-independent windows/UI
� face to face grading in lab

� Hall of Fame
� project 1: building beasties

� previous years: elephants, birds, poodles

� project 4: create your own graphics game
�

Late Work

� 3 grace days 
� for unforeseen circumstances
� strong recommendation: don’t use early in term
� handing in late uses up automatically unless you tell us

� otherwise: 25% per 24 hours
� no work accepted after solutions handed out

� exception: severe illness or crisis, as per UBC rules
� let me know ASAP (in person or email)
� must also turn in form with documentation

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005/illness.html



2

Page 2

�

Regrading

� to request assignment or exam regrade
� must submit detailed written explanation of 

why you think the grader was incorrect for the 
particular problem that you are disputing

� I may regrade entire assignment
� thus even if I agree with your original request, 

your score may end up higher or lower

�

Course Information

� course web page is main resource
� http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005
� updated often, reload frequently

� newsgroup is ubc.courses.cpsc.414
� note old course number still used
� readable on or off campus

� (no WebCT)

�

Labs

� attend two labs per week, 3 sessions each
� Tue/Thu 11-12, 3-4, 4-5

� Thursday afternoon better than Thu morning

� Tuesdays: example problems in spirit of 
written assignments and exams

� Thursdays: help with programming projects
� no deliverables
� strongly recommend that you attend

	


Teaching Staff

� instructor: Dr. Munzner
� tmm@cs.ubc.ca
� office hrs in CICSR 011

� Mon 4:30-5:30

� TAs: Warren Cheung, Greg Kempe
� wcheung@cs.ubc.ca
� kempe@cs.ubc.ca

� use newsgroup not email for all questions 
that other students might care about

		

Required Reading

� Fundamentals of Computer Graphics
� Peter Shirley, AK Peters 

� OpenGL Programming Guide, v 1.4
� OpenGL Architecture Review Board 
� v 1.1 available for free online

� readings posted on schedule page
	�

Learning OpenGL

� this is a graphics course using OpenGL
� not a course *on* OpenGL

� upper-level class: learning APIs mostly on 
your own
� only minimal lecture coverage

� basics, some of the tricky bits

� OpenGL Red Book
� many tutorial sites on the web

� nehe.gamedev.net



3

Page 3

	�

Plagiarism and Cheating

� don’t cheat, I will prosecute
� insult to your fellow students and to me

� programming and assignment writeups must be 
individual work
� exception: project 3 can be team of two
� can discuss ideas, browse Web
� but cannot just copy code or answers

� you must be able to explain algorithms during face-to-
face demo
� or no credit for that part of assignment, possible 

prosecution
	�

Citation

� cite all sources of information
� web sites, study group members, books
� README for programming projects
� end of writeup for written assignments
� http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/policies.html#plag

	�

What is Computer Graphics?

� create or manipulate images with computer
� this course: algorithms for image generation

	�

What is CG used for?

� graphical user interfaces
� modeling systems
� applications

� simulation & visualization

	�

What is CG used for?

� movies
� animation
� special effects

	�

What is CG used for?

� computer games



4

Page 4

	�

What is CG used for?

� images
� design
� advertising
� art

�


What is CG used for?

� virtual reality / immersive displays

�	

Real or CG?

http://www.alias.com/eng/etc/fakeorfoto/quiz.html

11

��

Real or CG?

22

��

Real or CG?

33

��

Real or CG?

44



5

Page 5

��

This Course

� we cover
� basic algorithms for 

� rendering – displaying models 
� (modeling – generating models)
� (animation – generating motion)

� programming in OpenGL, C++
� we do not cover
� art/design issues
� commercial software packages

��

Other Graphics Courses

� CPSC 424: Geometric Modeling
� CPSC 426: Computer Animation

� CPSC 514: Image-based Modeling and 
Rendering

� CPSC 526: Computer Animation
� CPSC 533A: Digital Geometry 
� CPSC 533B: Animation Physics
� CPSC 533C: Information Visualization

��

Rendering

� creating images from models
� geometric objects

� lines, polygons, curves, curved surfaces

� camera
� pinhole camera, lens systems, orthogonal

� shading
� light interacting with material

� Pixar Shutterbug series
� Williams and Siegel using Renderman, 1990
� www.siggraph.org/education/ materials/HyperGraph/shutbug.htm

��

Modelling Transformation: Object Placement

��

Viewing Transformation: Camera Placement

�


Perspective Projection



6

Page 6

�	

Depth Cueing

��

Depth Clipping

��

Colored Wireframes

��

Hidden Line Removal

��

Hidden Surface Removal

��

Per-Polygon Shading



7

Page 7

��

Gouraud Shading

��

Specular Reflection

��

Phong Shading

�


Curved Surfaces

�	

Complex Lighting and Shading

��

Texture Mapping



8

Page 8

��

Displacement Mapping

��

Reflection Mapping

��

Modelling

� generating models
� lines, curves, polygons, smooth surfaces
� digital geometry

��

Animation

� generating motion
� interpolating between frames, states

��

Math Review

��

Reading

� FCG Chapter 2: Miscellaneous Math
� except for 2.11 (covered later)
� skim 2.2 (sets and maps), 2.3 (quadratic eqns)
� important: 2.3 (trig), 2.4 (vectors), 2.5-6 (lines)

2.10 (linear interpolation)
� skip 2.5.1, 2.5.3, 2.7.1, 2.7.3, 2.8, 2.9

� FCG Chapter 4.1-4.25: Linear Algebra
� skim 4.1 (determinants)
� important: 4.2.1-4.2.2, 4.2.5 (matrices)

� skip 4.2.3-4, 4.2.6-7 (matrix numerical analysis)



9

Page 9

��

Textbook Errata

� list at http://www.cs.utah.edu/~shirley/fcg/errata
� p 29, 32, 39 have potential to confuse

�


Notation: Scalars, Vectors, Matrices

� scalar
� (lower case, italic)

� vector
� (lower case, bold)

� matrix
� (upper case, bold)

a

[ ]naaa ...21=a

�
�
�

�

�

�
�
�

�

�

=

333231

232221

131211

aaa

aaa

aaa

A

�	

Vectors

� arrow: length and direction
� oriented segment in nD space

� offset / displacement
� location if given origin

��

Column vs. Row Vectors

� row vectors

� column vectors

� switch back and forth with transpose

�
�
�
�

�

�

�
�
�
�

�

�

=

n

col

a

a

a

...
2

1

a

row
T
col aa =

[ ]nrow aaa ...21=a

��

Vector-Vector Addition

� add:  vector + vector = vector
� parallelogram rule

� tail to head, complete the triangle

�
�
�

�

�

�
�
�

�

�

+
+
+

=+

33

22

11

vu

vu
vu

vu

)0,6,5()1,1,3()1,5,2(

)6,9()4,6()2,3(

=−+
=+

vu +

u

v
geometric algebraic

examples:

��

Vector-Vector Subtraction

� subtract:  vector - vector = vector

�
�
�

�

�

�
�
�

�

�

−
−
−

=−

33

22

11

vu

vu
vu

vu

(3,2) − (6,4) = (−3,−2)
(2,5,1) − (3,1,−1) = (−1,4,0)=− vu

u
v

v−

)( vu −+



10

Page 10

��

Vector-Vector Subtraction

� subtract:  vector - vector = vector

�
�
�

�

�

�
�
�

�

�

−
−
−

=−

33

22

11

vu

vu
vu

vu

(3,2) − (6,4) = (−3,−2)
(2,5,1) − (3,1,−1) = (−1,4,0)=− vu

u
v

v−

)( vu −+

vu + v

u uv −
v

u
argument reversal

��

Scalar-Vector Multiplication

� multiply:  scalar * vector = vector
� vector is scaled

)*,*,*(* 321 uauauaa =u

)5,.5.2,1()1,5,2(*5.

)4,6()2,3(*2

=
=

u*a

u

��

Vector-Vector Multiplication

� multiply:  vector * vector = scalar
� dot product, aka inner product vu •

( ) ( ) ( )332111

3

2

1

3

2

1

vuvuvu

v

v

v

u

u

u

∗+∗+∗=
�
�
�

�

�

�
�
�

�

�

•
�
�
�

�

�

�
�
�

�

�

��

Vector-Vector Multiplication

� multiply:  vector * vector = scalar
� dot product, aka inner product

( ) ( ) ( )332111

3

2

1

3

2

1

vuvuvu

v

v

v

u

u

u

∗+∗+∗=
�
�
�

�

�

�
�
�

�

�

•
�
�
�

�

�

�
�
�

�

�

vu •

θcosvuvu =•

u

v
θ

� geometric interpretation
� lengths, angles
� can find angle between two 
vectors

��

Dot Product Geometry

� can find length of projection of u onto v

� as lines become perpendicular, 

θcosvuvu =• u

v
θ

θcosu

0→• vu

v
vuu •=θcos

�


Dot Product Example

19676)3*2()7*1()1*6(
3
7
1

2
1
6

=++=++=
�
�
�

�

�

�
�
�

�

�

•
�
�
�

�

�

�
�
�

�

�

( ) ( ) ( )332111

3

2

1

3

2

1

vuvuvu

v

v

v

u

u

u

∗+∗+∗=
�
�
�

�

�

�
�
�

�

�

•
�
�
�

�

�

�
�
�

�

�



11

Page 11

�	

Vector-Vector Multiplication, The Sequel

� multiply:  vector * vector = vector
� cross product

� algebraic

� geometric

� parallelogram
area

� perpendicular
to parallelogram

�
�
�

�

�

�
�
�

�

�

−
−
−

=
�
�
�

�

�

�
�
�

�

�

×
�
�
�

�

�

�
�
�

�

�

1221

3113

2332

3

2

1

3

2

1

vuvu

vuvu

vuvu

v

v

v

u

u

u

a

b
φ

a × b

ba×

ba×

θsinvuba =×

��

RHS vs LHS Coordinate Systems

� right-handed coordinate system

� left-handed coordinate system

xy

z

xy
z

right hand rule: 
index finger x, second finger y;
right thumb points up

left hand rule: 
index finger x, second finger y;
left thumb points down

yxz ×=

yxz ×=

convention

��

Basis Vectors

� take any two vectors that are linearly 
independent (nonzero and nonparallel)
� can use linear combination of these to define 

any other vector:

bac 21 ww +=

2a

0.5b
c = 2a + 0.5ba

c

b

��

Orthonormal Basis Vectors

� if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)
� we have Cartesian coordinate system
� familiar Pythagorean definition of distance

2x
0.5yc = 2x + 0.5y

x

y

0

,1

=•
==

yx
yx

orthonormal algebraic properties

��

Basis Vectors and Origins

jiop yx ++=
o

p

i

j

� coordinate system: just basis vectors
� can only specify offset: vectors

� coordinate frame: basis vectors and origin
� can specify location as well as offset: points

��

Working with Frames

p
FF11

FF11

i
j

o

jiop yx ++=



12

Page 12

��

Working with Frames

p
FF11

FF11 p = (3,p = (3,--1)1)

i
j

o

jiop yx ++=

��

Working with Frames

p
FF11

FF11 p = (3,p = (3,--1)1)

FF22

i
j

o

jiop yx ++=

FF22

i
j
o

��

Working with Frames

p
FF11

FF11 p = (3,p = (3,--1)1)

FF22 p = (p = (--1.5,2)1.5,2)

i
j

o

jiop yx ++=

FF22

i
j
o

�


Working with Frames

p
FF11

FF11 p = (3,p = (3,--1)1)

FF22 p = (p = (--1.5,2)1.5,2)

FF33

i
j

FF22

i
j
o

FF33

ij
o

o

jiop yx ++=

�	

Working with Frames

p
FF11

FF11 p = (3,p = (3,--1)1)

FF22 p = (p = (--1.5,2)1.5,2)

FF33 p = (1,2)p = (1,2)

i
j

FF22

i
j
o

FF33

ij
o

o

jiop yx ++=

��

Named Coordinate Frames

� origin and basis vectors
� pick canonical frame of reference

� then don’t have to store origin, basis vectors
� just
� convention: Cartesian orthonormal one on 

previous slide
� handy to specify others as needed

� airplane nose, looking over your shoulder, ...
� really common ones given names in CG

� object, world, camera, screen, ...

),,( cba=p

zyxop cba +++=



13

Page 13

��

Lines

� slope-intercept form
� y = mx + b

� implicit form
� y – mx – b = 0
� Ax + By + C = 0
� f(x,y) = 0

x

y
f(x,y)=0

f(x,y) = y - mx - b
m = -b/a

y=b

x=a

��

Implicit Functions

� find where function is 0
� plug in (x,y), check if

� 0: on line
� < 0: inside
� > 0: outside

� analogy: terrain
� sea level: f=0
� altitude: function value
� topo map: equal-value

contours (level sets)

yx

f

f(x,y)=0

x

y

f(x,y)=0

��

Implicit Circles
�

� circle is points (x,y) where f(x,y) = 0
�

� points p on circle have property that vector 
from c to p dotted with itself has value r2

�

� points points p on the circle have property 
that squared distance from c to p is r2

�

� points p on circle are those a distance r from 
center point c

222 )()(),( ryyxxyxf cc −−+−=

0)()(:),(),,( 2 =−−•−== ryxcyxp cc cpcp

022 =−− rcp

0=−− rcp

��

Parametric Curves

� parameter: index that changes continuously
� (x,y): point on curve
� t: parameter

� vector form
�

�
�

�
�
�

�
=�

�

�
�
�

�

)(

)(

th

tg

y

x

)(tf=p

��

2D Parametric Lines

�

�

�

� start at point p0,
go towards p1,
according to parameter t
� p(0) = p0, p(1) = p1

x

y

� 

� 
� 
� 

� 
� =

x0 + t(x1 − x0)
y0 + t(y1 − y0)

� 

� 
� 

� 

� 
� 

)()( 010 pppp −+= tt p(0.0)
p0

p1

p1-p0

p(1.0)

p(0.25)

p(0.5)

p(1.5)

p(-0.5)

p(-1.0)

)()( dop tt +=

��

Linear Interpolation

� parametric line is example of general concept
�

� interpolation
� p goes through a at t = 0
� p goes through b at t = 1

� linear
� weights t, (1-t) are linear polynomials in t

)()( 010 pppp −+= tt



14

Page 14

��

Matrix-Matrix Addition

� add:  matrix + matrix = matrix

� example

�
�

�
�
�

�

++
++

=�
�

�
�
�

�
+�
�

�
�
�

�

22222121

12121111

2221

1211

2221

1211

mnmn
mnmn

nn
nn

mm
mm

�
�

�
�
�

�−
=�

�

�
�
�

�

++
+−+

=�
�

�
�
�

�−
+�
�

�
�
�

�

59
81

1472
53)2(1

17
52

42
31

�


Scalar-Matrix Multiplication

� multiply: scalar * matrix = matrix

� example

�
�

�
�
�

�
=�

�

�
�
�

�

2221

1211

2221

1211

**
**

mama
mama

mm
mm

a

�
�

�
�
�

�
=�

�

�
�
�

�
=�

�

�
�
�

�

153
126

5*31*3
4*32*3

51
42

3

�	

Matrix-Matrix Multiplication

� row by column

�
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

2221

1211

2221

1211

2221

1211

pp
pp

nn
nn

mm
mm

2112111111 nmnmp +=

��

Matrix-Matrix Multiplication

� row by column

�
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

2221

1211

2221

1211

2221

1211

pp
pp

nn
nn

mm
mm

2112111111 nmnmp +=

2122112121 nmnmp +=

��

Matrix-Matrix Multiplication

� row by column

�
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

2221

1211

2221

1211

2221

1211

pp
pp

nn
nn

mm
mm

2112111111 nmnmp +=

2212121112 nmnmp +=
2122112121 nmnmp +=

��

Matrix-Matrix Multiplication

� row by column

�
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

2221

1211

2221

1211

2221

1211

pp
pp

nn
nn

mm
mm

2112111111 nmnmp +=

2212121112 nmnmp +=
2122112121 nmnmp +=

2222122122 nmnmp +=



15

Page 15

��

Matrix-Matrix Multiplication

� row by column

� noncommutative: AB != BA

�
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�

2221

1211

2221

1211

2221

1211

pp
pp

nn
nn

mm
mm

2112111111 nmnmp +=

2212121112 nmnmp +=
2122112121 nmnmp +=

2222122122 nmnmp +=

��

Matrix Multiplication

� can only multiply if 
number of left rows = number of right cols
� legal

� undefined
�
�
�

�

�

�
�
�

�

�

�
�

�
�
�

�

ml

kj
ih

gfe
cba

�
�

�
�
�

�

�
�
�

�

�

�
�
�

�

�

kj
ih

q
g

p
f

o
e

cba

��

Matrix-Vector Multiplication

� points as column vectors: postmultiply

� points as row vectors: premultiply

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

h

z
y
x

mmmm
mmmm

mmmm
mmmm

h

z
y
x

44434241

34333231

24232221

14131211

'

'
'
'

Mpp'=

[ ] [ ]

T

mmmm
mmmm

mmmm
mmmm

hzyxhzyx

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

44434241

34333231

24232221

14131211

''''
TTT Mpp' =

��

Matrices

� transpose

� identity

� inverse
� not all matrices are invertible

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

44342414

43332313

42322212

41312111

44434241

34333231

24232221

14131211

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm
T

�
�
�
�

�

�

�
�
�
�

�

�

1000

0100
0010

0001

IAA =−1

��

Matrices and Linear Systems

� linear system of n equations, n unknowns

� matrix form Ax=b

125
1342

4273

=++
−=−−

=++

zyx
zyx
zyx

�
�
�

�

�

�
�
�

�

�

−
−=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−−
1

1
4

125

342
273

z

y
x

�


Rendering Pipeline



16

Page 16

�	

Reading

� RB Chap. Introduction to OpenGL 
� RB Chap. State Management and Drawing 

Geometric Objects
� RB Appendix Basics of GLUT 

� (Basics of Aux in v 1.1)

��

Rendering

� goal
� transform computer models into images
� may or may not be photo-realistic

� interactive rendering
� fast, but limited quality
� roughly follows a fixed patterns of operations

� rendering pipeline

� offline rendering
� ray-tracing
� global illumination

��

Rendering

� tasks that need to be performed 
(in no particular order):
� project all 3D geometry onto the image plane

� geometric transformations

� determine which primitives or parts of primitives are 
visible

� hidden surface removal

� determine which pixels a geometric primitive covers
� scan conversion

� compute the color of every visible surface point
� lighting, shading, texture mapping

��

Rendering Pipeline

� what is the pipeline?
� abstract model for sequence of operations to 

transform geometric model into digital image
� abstraction of the way graphics hardware works
� underlying model for application programming 

interfaces (APIs) that allow programming of graphics 
hardware

� OpenGL
� Direct 3D

� actual implementation details of rendering pipeline 
will vary

��

Rendering Pipeline

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing BlendingBlendingBlending

Frame-
buffer

FrameFrame--
bufferbuffer

��

Geometry Database

� geometry database
� application-specific data structure for 

holding geometric information
� depends on specific needs of application

� triangle soup, points, mesh with connectivity 
information, curved surface

Geometry
Database
GeometryGeometry
DatabaseDatabase



17

Page 17

��

Model/View Transformation

� modeling transformation
� map all geometric objects from local coordinate 

system into world coordinates
� viewing transformation
� map all geometry from world coordinates into 

camera coordinates

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform.

��

Lighting

� lighting
� compute brightness based on property of 

material and light position(s)
� computation is performed per-vertex

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting

��

Perspective Transformation

� perspective transformation
� projecting the geometry onto the image plane
� projective transformations and model/view 

transformations can all be expressed with 4x4 
matrix operations

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform.

	



Clipping

� clipping
� removal of parts of the geometry that fall 

outside the visible screen or window region
� may require re-tessellation of geometry

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

	
	

Texture Mapping

� texture mapping
� “gluing images onto geometry”
� color of every fragment is altered by 

looking up a new color value from an 
image

Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion TexturingTexturingTexturing

	
�

Depth Test
Geometry
Database
GeometryGeometry
DatabaseDatabase

Model/View
Transform.
Model/ViewModel/View
Transform.Transform. LightingLightingLighting Perspective

Transform.
PerspectivePerspective
Transform.Transform. ClippingClippingClipping

Scan
Conversion

ScanScan
ConversionConversion

Depth
Test

DepthDepth
TestTestTexturingTexturingTexturing

� depth test
� remove parts of geometry hidden behind 

other geometric objects
� perform on every individual fragment

� other approaches (later)



18

Page 18

	
�

Pipeline Advantages

� modularity: logical separation of different components
� easy to parallelize
� earlier stages can already work on new data while later 

stages still work with previous data
� similar to pipelining in modern CPUs
� but much more aggressive parallelization possible 

(special purpose hardware!)
� important for hardware implementations

� only local knowledge of the scene is necessary

	
�

Pipeline Disadvantages

� limited flexibility
� some algorithms would require different 
ordering of pipeline stages
� hard to achieve while still preserving 

compatibility
� only local knowledge of scene is available
� shadows
� global illumination

	
�

OpenGL (briefly)

	
�

OpenGL

� started in 1989 by Kurt Akeley
� based on IRIS_GL by SGI

� API to graphics hardware
� designed to exploit hardware optimized for 

display and manipulation of 3D graphics
� implemented on many different platforms
� low level, powerful flexible
� pipeline processing

� set state as needed

	
�

Graphics State

� set the state once, remains until overwritten
� glColor3f(1.0, 1.0, 0.0) � set color to yellow
� glSetClearColor(0.0, 0.0, 0.2) � dark blue bg
� glEnable(LIGHT0) � turn on light
� glEnable(GL_DEPTH_TEST) � hidden surf.

	
�

Geometry Pipeline

� tell it how to interpret geometry
� glBegin(<mode of geometric primitives>)
� mode = GL_TRIANGLE, GL_POLYGON, etc.

� feed it vertices
� glVertex3f(-1.0, 0.0,  -1.0)
� glVertex3f(1.0, 0.0,  -1.0)
� glVertex3f(0.0, 1.0,  -1.0)

� tell it you’re done
� glEnd()



19

Page 19

	
�

Open GL: Geometric Primitives

glPointSizeglPointSize( float size);( float size);
glLineWidthglLineWidth( float width);( float width);
glColor3f( float r, float g, float b);glColor3f( float r, float g, float b);
........

		


Code Sample
void display()
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 1.0, 0.0);
glBegin(GL_POLYGON);

glVertex3f(0.25, 0.25, -0.5);
glVertex3f(0.75, 0.25, -0.5);
glVertex3f(0.75, 0.75, -0.5);
glVertex3f(0.25, 0.75, -0.5);

glEnd();
glFlush();

}
� more OpenGL as course continues 

			

GLUT

		�

GLUT: OpenGL Utility Toolkit 

� developed by Mark Kilgard (also from SGI)
� simple, portable window manager

� opening windows
� handling graphics contexts

� handling input with callbacks
� keyboard, mouse, window reshape events

� timing
� idle processing, idle events

� designed for small-medium size applications
� distributed as binaries

� free, but not open source

		�

GLUT Draw World

intint main(intmain(int argcargc, char **, char **argvargv))
{{

glutInitglutInit( &( &argcargc, , argvargv ););
glutInitDisplayModeglutInitDisplayMode( GLUT_RGB |               ( GLUT_RGB |               

GLUT_DOUBLE | GLUT_DEPTH);GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSizeglutInitWindowSize( 640, 480 );( 640, 480 );
glutCreateWindowglutCreateWindow( "( "openGLDemoopenGLDemo" );" );
glutDisplayFuncglutDisplayFunc( ( DrawWorldDrawWorld ););
glutIdleFunc(IdleglutIdleFunc(Idle););
glClearColorglClearColor( 1,1,1 );( 1,1,1 );
glutMainLoopglutMainLoop();();

return 0;       // never reachedreturn 0;       // never reached
}}

		�

Event-Driven Programming

� main loop not under your control
� vs. procedural

� control flow through event callbacks
� redraw the window now
� key was pressed
� mouse moved

� callback functions called from main loop 
when events occur
� mouse/keyboard state setting vs. redrawing



20

Page 20

		�

GLUT Callback Functions
// you supply these kind of functions// you supply these kind of functions

void void reshape(intreshape(int w, w, intint h); h); 
void keyboard(unsigned char key, void keyboard(unsigned char key, intint x, x, intint y);y);
void void mouse(intmouse(int but, but, intint state, state, intint x, x, intint y);y);
void idle();void idle();
void display();void display();

// register them with glut// register them with glut

glutReshapeFunc(reshapeglutReshapeFunc(reshape););
glutKeyboardFunc(keyboardglutKeyboardFunc(keyboard););
glutMouseFunc(mouseglutMouseFunc(mouse););
glutIdleFunc(idleglutIdleFunc(idle););
glutDisplayFunc(displayglutDisplayFunc(display););

void void glutDisplayFuncglutDisplayFunc (void(void (*(*func)(voidfunc)(void));));
voidvoid glutKeyboardFuncglutKeyboardFunc (void(void (*(*func)(unsignedfunc)(unsigned charchar key,key, intint x,x, intint y));y));
voidvoid glutIdleFuncglutIdleFunc (void(void (*(*funcfunc)());)());
voidvoid glutReshapeFuncglutReshapeFunc (void(void (*(*func)(intfunc)(int width,width, intint height));height));

		�

Display Function
void DrawWorld() {

glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glClear( GL_COLOR_BUFFER_BIT );
angle += 0.05; //animation
glRotatef(angle,0,0,1); //animation
...  // redraw triangle in new position
glutSwapBuffers();

}

� directly update value of angle variable
� so, why doesn't it spin?
� only called in response to window/input event!

		�

Idle Function
void Idle() {

angle += 0.05;
glutPostRedisplay();

}

� called from main loop when no user input
� should return control to main loop quickly

� update value of angle variable here
� then request redraw event from GLUT

� draw function will be called next time through

� continues to rotate even when no user action

		�

Keyboard/Mouse Callbacks

� do minimal work
� request redraw for display
� example: keypress triggering animation

� do not create loop in input callback!
� what if user hits another key during animation?

� shared/global variables to keep track of state
� display function acts on current variable value

		�

Labs

	�


Thursday Lab
� labs start Thursday

� 11-12: morning not ideal, it’s before lecture
� 3-4,4-5: better, try to attend afternoon if possible

� project 0
� make sure you can compile OpenGL/GLUT

� useful to test home computing environment
� template: spin around obj files
� todo: change rotation axis
� do not hand in, not graded
� http://www.ugrad.cs.ubc.ca/~cs314/Vmay2005/a0

� project 1
� transformations
� more on Thursday after transformations lecture



21

Page 21

	�	

Remote Graphics

� OpenGL does not work well remotely
� very slow

� only one user can use graphics at a time
� current X server doesn’t give priority to console, just 

does first come first served
� problem: FCFS policy = confusion/chaos

� solution: console user gets priority
� only use graphics remotely if nobody else logged on

� with ‘who’ command, “:0” is console person
� stop using graphics if asked by console user via email
� or console user can reboot machine out from under you


