
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Textures I

Week 9, Fri Mar 19

2

News

• extra TA office hours in lab for Q&A
• Mon 10-1, Tue 12:30-3:30 (Garrett)
• Tue 3:30-5, Wed 2-5 (Kai)
• Thu 12-3:30 (Shailen)
• Fri 2-4 (Kai)

3

Reading for Texture Mapping

• FCG Chap 11 Texture Mapping
• except 11.7 (except 11.8, 2nd ed)

• RB Chap Texture Mapping

4

Review: Back-face Culling

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>
Z
N

yy
zz

5

Review: Invisible Primitives
• why might a polygon be invisible?

• polygon outside the field of view / frustum
• solved by clipping

• polygon is backfacing
• solved by backface culling

• polygon is occluded by object(s) nearer the viewpoint
• solved by hidden surface removal

6

Review: Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

7

Review: Blending/Compositing
• how might you combine multiple elements?
• foreground color A, background color B

8

Premultiplying Colors
• specify opacity with alpha channel: (r,g,b,α)

• α=1: opaque, α=.5: translucent, α=0: transparent

• A over B
• C = αA + (1-α)B

• but what if B is also partially transparent?
• C = αA + (1-α) βB = βB + αA + βB - α βB
• γ = β + (1-β)α = β + α – αβ

• 3 multiplies, different equations for alpha vs. RGB

• premultiplying by alpha
• C’ = γ C, B’ = βB, A’ = αA

• C’ = B’ + A’ - αB’
• γ = β + α – αβ

• 1 multiply to find C, same equations for alpha and RGB

9

Texturing

10

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

Geometry ProcessingGeometry Processing

RasterizationRasterization Fragment ProcessingFragment Processing

11

Texture Mapping
• real life objects have

nonuniform colors,
normals

• to generate realistic
objects, reproduce
coloring & normal
variations = texture

• can often replace
complex geometric
details

12

Texture Mapping
• introduced to increase realism

• lighting/shading models not enough
• hide geometric simplicity

• images convey illusion of geometry
• map a brick wall texture on a flat polygon
• create bumpy effect on surface

• associate 2D information with 3D surface
• point on surface corresponds to a point in

texture
• “paint” image onto polygon

13

Color Texture Mapping

• define color (RGB) for each point on object
surface

• two approaches
• surface texture map
• volumetric texture

14

Texture Coordinates
• texture image: 2D array of color values (texels)
• assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
• use interpolated (s,t) for texel lookup at each pixel
• use value to modify a polygon’s color

• or other surface property
• specified by programmer or artist glTexCoord2f(s,t)

glVertexf(x,y,z,w)

15

Texture Mapping Example

+ =

16

Example Texture Map

glTexCoord2d(0,0);
glVertex3d (0, -2, -2);

glTexCoord2d(1,1);
glVertex3d (0, 2, 2);

17

Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

18

Texture Lookup: Tiling and Clamping

• what if s or t is outside the interval [0…1]?
• multiple choices

• use fractional part of texture coordinates
• cyclic repetition of texture to tile whole surface

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

• clamp every component to range [0…1]
• re-use color values from texture image border

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

19

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)
20

Demo

• Nate Robbins tutors
• texture

21

Texture Coordinate Transformation
• motivation

• change scale, orientation of texture on an object
• approach

• texture matrix stack
• transforms specified (or generated) tex coords

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glRotate();
 …

• more flexible than changing (s,t) coordinates
• [demo]

22

Texture Functions
• once have value from the texture map, can:

• directly use as surface color: GL_REPLACE
• throw away old color, lose lighting effects

• modulate surface color: GL_MODULATE
• multiply old color by new value, keep lighting info
• texturing happens after lighting, not relit

• use as surface color, modulate alpha: GL_DECAL
• like replace, but supports texture transparency

• blend surface color with another: GL_BLEND
• new value controls which of 2 colors to use
• indirection, new value not used directly for coloring

• specify with glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, <mode>)

• [demo]

23

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

24

Texture Objects and Binding
• texture object

• an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

• provides efficiency gains over having to repeatedly load and reload a
texture

• you can prioritize textures to keep in memory
• OpenGL uses least recently used (LRU) if no priority is assigned

• texture binding
• which texture to use right now
• switch between preloaded textures

25

Basic OpenGL Texturing
• create a texture object and fill it with texture data:

• glGenTextures(num, &indices) to get identifiers for the objects
• glBindTexture(GL_TEXTURE_2D, identifier) to bind

• following texture commands refer to the bound texture
• glTexParameteri(GL_TEXTURE_2D, …, …) to specify

parameters for use when applying the texture
• glTexImage2D(GL_TEXTURE_2D, ….) to specify the texture data

(the image itself)
• enable texturing: glEnable(GL_TEXTURE_2D)
• state how the texture will be used:

• glTexEnvf(…)
• specify texture coordinates for the polygon:

• use glTexCoord2f(s,t) before each vertex:
• glTexCoord2f(0,0); glVertex3f(x,y,z);

26

Low-Level Details
• large range of functions for controlling layout of texture data

• state how the data in your image is arranged
• e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
• you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…
• textures must be square and size a power of 2

• common sizes are 32x32, 64x64, 256x256
• smaller uses less memory, and there is a finite amount of

texture memory on graphics cards
• ok to use texture template sample code for project 4

• http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

27

Texture Mapping

• texture coordinates
• specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

• interpolated across triangle (like R,G,B,Z)
• …well not quite!

28

Texture Mapping

• texture coordinate interpolation
• perspective foreshortening problem

29

Interpolation: Screen vs. World Space

• screen space interpolation incorrect
• problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

30

Texture Coordinate Interpolation
• perspective correct interpolation

• α, β, γ :
• barycentric coordinates of a point P in a triangle

• s0, s1, s2 :
• texture coordinates of vertices

• w0, w1,w2 :
• homogeneous coordinates of vertices

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)

(α,β,γ)
(s,t)?

31

Reconstruction

(image courtesy of (image courtesy of Kiriakos KutulakosKiriakos Kutulakos, U Rochester), U Rochester)
32

Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

33

MIPmapping

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

use use ““image pyramidimage pyramid”” to to precomputeprecompute
averaged versions of the textureaveraged versions of the texture

store whole pyramid instore whole pyramid in
single block of memorysingle block of memory

34

MIPmaps
• multum in parvo -- many things in a small place

• prespecify a series of prefiltered texture maps of decreasing
resolutions

• requires more texture storage
• avoid shimmering and flashing as objects move

• gluBuild2DMipmaps

• automatically constructs a family of textures from original
texture size down to 1x1

without with

35

MIPmap storage

• only 1/3 more space required

36

Texture Parameters

• in addition to color can control other
material/object properties
• surface normal (bump mapping)
• reflected color (environment mapping)

37

Bump Mapping: Normals As Texture
• object surface often not smooth – to recreate correctly

need complex geometry model
• can control shape “effect” by locally perturbing surface

normal
• random perturbation
• directional change over region

38

Bump Mapping

39

Bump Mapping

40

Embossing

• at transitions
• rotate point’s surface normal by θ or - θ

41

Displacement Mapping
• bump mapping gets

silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

