
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Hidden Surfaces II

Week 9, Mon Mar 15

2

News

• yes, I'm granting the request for course
marking scheme change
• old scheme: midterm 20%, final 25%

• 45% of grade is exam marks
• argument: midterm is 50 minutes, final is 150

minutes, so want 25/75% division vs 45/55%
• new scheme: midterm 12%, final 33%
• we'll check - if you would get a better grade in

course with old scheme, we'll use that instead

3

Correction: P1 Hall of Fame: Winner

Sung-Hoon (Nick) Kim

4

Further Clarification: Blinn-Phong Model
• only change vs Phong model is to have the specular

calculation to use instead of

• full Blinn-Phong lighting model equation has
ambient, diffuse, specular terms

• just like full Phong model equation

!

(h•n)

!

I
total

= k
a
I
ambient

+ I
i
(

i=1

lights

" k
d
(n• l

i
) + k

s
(n•h

i
)
n
shiny
)

!

(v•r)

!

I
total

= k
a
I
ambient

+ I
i
(

i=1

lights

" k
d
(n• l

i
) + k

s
(v•r

i
)
n
shiny
)

5

Reading for Hidden Surfaces

• FCG Sect 8.2.3 Z-Buffer
• FCG Sect 12.4 BSP Trees

• (8.1, 8.2 2nd ed)

6

Review: Cohen-Sutherland Line Clipping
• outcodes

• 4 flags encoding position of a point relative to top,
bottom, left, and right boundary

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3
• OC(p1)== 0 &&

OC(p2)==0
• trivial accept

• (OC(p1) &
OC(p2))!= 0
• trivial reject

7

Review: Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments

8

Review: Sutherland-Hodgeman Clipping
• for each viewport edge

• clip the polygon against the edge equation for new vertex list
• after doing all edges, the polygon is fully clipped

• for each polygon vertex
• decide what to do based on 4 possibilities

• is vertex inside or outside?
• is previous vertex inside or outside?

9

Review: Sutherland-Hodgeman Clipping

• edge from p[i-1] to p[i] has four cases
• decide what to add to output vertex list

inside outside

p[i]

p[i] output

inside outside

no output

inside outside

i output

inside outside

i output
p[i] output

p[i]

p[i] p[i]p[i-1]

p[i-1] p[i-1]

p[i-1]

10

Review: Painter’s Algorithm

• draw objects from back to front
• problems: no valid visibility order for

• intersecting polygons
• cycles of non-intersecting polygons possible

11

Binary Space Partition Trees (1979)

• BSP Tree: partition space with binary tree of
planes
• idea: divide space recursively into half-spaces

by choosing splitting planes that separate
objects in scene

• preprocessing: create binary tree of planes
• runtime: correctly traversing this tree

enumerates objects from back to front

12

Creating BSP Trees: Objects

13

Creating BSP Trees: Objects

14

Creating BSP Trees: Objects

15

Creating BSP Trees: Objects

16

Creating BSP Trees: Objects

17

Splitting Objects

• no bunnies were harmed in previous
example

• but what if a splitting plane passes through
an object?
• split the object; give half to each node

Ouch

18

Traversing BSP Trees
• tree creation independent of viewpoint

• preprocessing step
• tree traversal uses viewpoint

• runtime, happens for many different viewpoints
• each plane divides world into near and far

• for given viewpoint, decide which side is near and
which is far

• check which side of plane viewpoint is on
independently for each tree vertex

• tree traversal differs depending on viewpoint!
• recursive algorithm

• recurse on far side
• draw object
• recurse on near side

19

Traversing BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
 renderBSP(near);

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

20

BSP Trees : Viewpoint A

21

BSP Trees : Viewpoint A

F N

F

N

22

BSP Trees : Viewpoint A

F NF
N

FN

 decide independently at
each tree vertex

 not just left or right child!

23

BSP Trees : Viewpoint A

F N

F

N

NF

FN

24

BSP Trees : Viewpoint A

F N

F

N

NF

FN

25

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

26

BSP Trees : Viewpoint A

F N
F N

FN

FN NF

1

2

1 2

27

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

28

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

29

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

3

1 2

3

30

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4

F N

1 2

34

31

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

F N

1 2

34

5

32

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

1 2

34

5

6

78

96

7
8

9

FN

FN

FN

33

BSP Trees : Viewpoint B

N F

F

N F

N

FN

F N

FNF N

N F

34

BSP Trees : Viewpoint B

N F

F

N F

N

FN

1

34

2

F N

FNF N

N F5

6

7

891

2

3

4

5

6

7

9

8

35

BSP Tree Traversal: Polygons

• split along the plane defined by any polygon
from scene

• classify all polygons into positive or negative
half-space of the plane
• if a polygon intersects plane, split polygon into

two and classify them both
• recurse down the negative half-space
• recurse down the positive half-space

36

BSP Demo

• useful demo:
http://symbolcraft.com/graphics/bsp

37

Summary: BSP Trees
• pros:

• simple, elegant scheme
• correct version of painter’s algorithm back-to-front rendering

approach
• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort
• splitting increases polygon count: O(n2) worst-case
• computationally intense preprocessing stage restricts algorithm to

static scenes

38

Clarification: BSP Demo

• order of insertion can affect half-plane extent

39

Summary: BSP Trees
• pros:

• simple, elegant scheme
• correct version of painter’s algorithm back-to-front rendering

approach
• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort
• splitting increases polygon count: O(n2) worst-case
• computationally intense preprocessing stage restricts algorithm to

static scenes

40

The Z-Buffer Algorithm (mid-70’s)

• BSP trees proposed when memory was
expensive
• first 512x512 framebuffer was >$50,000!

• Ed Catmull proposed a radical new
approach called z-buffering

• the big idea:
• resolve visibility independently at each

pixel

41

The Z-Buffer Algorithm

• we know how to rasterize polygons into an
image discretized into pixels:

42

The Z-Buffer Algorithm

• what happens if multiple primitives occupy
the same pixel on the screen?
• which is allowed to paint the pixel?

43

The Z-Buffer Algorithm

• idea: retain depth after projection transform
• each vertex maintains z coordinate

• relative to eye point
• can do this with canonical viewing volumes

44

The Z-Buffer Algorithm
• augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each
pixel
• at frame beginning, initialize all pixel depths

to ∞
• when rasterizing, interpolate depth (Z)

across polygon
• check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
• don’t write pixel if its Z value is more distant

than the Z value already stored there

45

Interpolating Z

• barycentric coordinates
• interpolate Z like other

planar parameters

46

Z-Buffer

• store (r,g,b,z) for each pixel
• typically 8+8+8+24 bits, can be more

for all i,j {for all i,j {
 Depth[i,j] = MAX_DEPTH Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR Image[i,j] = BACKGROUND_COLOUR
}}
for all polygons P {for all polygons P {
 for all pixels in P { for all pixels in P {
 if (Z_pixel < Depth[i,j]) { if (Z_pixel < Depth[i,j]) {
 Image[i,j] = C_pixel Image[i,j] = C_pixel
 Depth[i,j] = Z_pixel Depth[i,j] = Z_pixel
 } }
 } }
}}

47

Depth Test Precision

• reminder: perspective transformation maps
eye-space (view) z to NDC z

• thus:

48

Correction: Ortho Camera Projection
• camera’s back plane

parallel to lens
• infinite focal length
• no perspective

convergence
• just throw away z values
• x and y coordinates do

not change with respect
to z in this projection

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

0

y

x

z

y

x

p

p

p

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11000

0000

0010

0001

1

z

y

x

z

y

x

p

p

p

P

nearfar

nearfar

nearfar

bottop

bottop

bottop

leftright

leftright

leftright

P

!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'

+
'

'

'

'

+
'

'

'

+
'

'

=

1000

2
00

0
2

0

00
2

'

week4.day2, slide 18

49

Depth Test Precision

• therefore, depth-buffer essentially stores 1/z,
rather than z!

• issue with integer depth buffers
• high precision for near objects
• low precision for far objects

-z-zeyeeye

zzNDCNDC

-n-n -f-f

50

Depth Test Precision
• low precision can lead to depth fighting for far objects

• two different depths in eye space get mapped to same
depth in framebuffer

• which object “wins” depends on drawing order and scan-
conversion

• gets worse for larger ratios f:n
• rule of thumb: f:n < 1000 for 24 bit depth buffer

• with 16 bits cannot discern millimeter differences in
objects at 1 km distance

• demo:
sjbaker.org/steve/omniv/love_your_z_buffer.html

51

 Z-Buffer Algorithm Questions

• how much memory does the Z-buffer use?
• does the image rendered depend on the

drawing order?
• does the time to render the image depend on

the drawing order?
• how does Z-buffer load scale with visible

polygons? with framebuffer resolution?

52

Z-Buffer Pros

• simple!!!
• easy to implement in hardware

• hardware support in all graphics cards today
• polygons can be processed in arbitrary order
• easily handles polygon interpenetration
• enables deferred shading

• rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

53

Z-Buffer Cons
• poor for scenes with high depth complexity

• need to render all polygons, even if
most are invisible

• shared edges are handled inconsistently
• ordering dependent

eyeeye

54

Z-Buffer Cons
• requires lots of memory

• (e.g. 1280x1024x32 bits)
• requires fast memory

• Read-Modify-Write in inner loop
• hard to simulate translucent polygons

• we throw away color of polygons behind
closest one

• works if polygons ordered back-to-front
• extra work throws away much of the speed

advantage

55

Hidden Surface Removal

• two kinds of visibility algorithms
• object space methods
• image space methods

56

Object Space Algorithms
• determine visibility on object or polygon level

• using camera coordinates
• resolution independent

• explicitly compute visible portions of polygons
• early in pipeline

• after clipping
• requires depth-sorting

• painter’s algorithm
• BSP trees

57

Image Space Algorithms

• perform visibility test for in screen coordinates
• limited to resolution of display
• Z-buffer: check every pixel independently

• performed late in rendering pipeline

58

Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatefglRotatef((thth,x,y,z),x,y,z)
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)

59

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

OCSOCS
object

WCSWCS
world

VCSVCS
viewing

CCSCCS
clipping

NDCSNDCS

normalized
device

SCSSCS
screen

(2D)DCSDCS
device

(3D)

(4D)

/w/w

