C
e

))
)]

s University of British Columbia
oA CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Hidden Surfaces Il

Week 9, Mon Mar 15

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

* yes, I'm granting the request for course
marking scheme change

* old scheme: midterm 20%, final 25%

* 45% of grade is exam marks

- argument: midterm is 50 minutes, final is 150
minutes, so want 25/75% division vs 45/55%

 new scheme: midterm 12%, final 33%

- we'll check - if you would get a better grade in
course with old scheme, we'll use that instead

Correction: P1 Hall of Fame: Winner

Sung-Hoon (Nick) Kim

Further Clarification: Blinn-Phong Model

» only change vs Phong model is to have the specular
calculation to use (h*n) instead of (ver)

* full Blinn-Phong lighting model equation has

ambient, diffuse, specular terms
#lights

I =k.I + YLK mel)+k_ (neh))
total a~ ambient ivod i S i
i=1

* just like full Phong model equation
#lights

Lo = Koampient + D L@ 1) + K (vor,))
total a - ambient i d i S i
=1

4

Reading for Hidden Surfaces

« FCG Sect 8.2.3 Z-Buffer
 FCG Sect 12.4 BSP Trees

* (8.1, 8.2 2nd ed)

Review: Cohen-Sutherland Line Clipping

 outcodes

* 4 flags encoding position of a point relative to top,
bottom, left, and right boundary

» OC(p1)==0 && 1010 1000 1001
OC(p2)==O opl p3 o
* trivial accept 0010 0000 0001
* (OC(p1) & P2
OC(p2))!= 0 o
0110 0100 0101

* trivial reject x=x x=x_

Review: Polygon Clipping

* not just clipping all boundary lines
* may have to introduce new line segments

Review: Sutherland-Hodgeman Clipping

« for each viewport edge
 clip the polygon against the edge equation for new vertex list
- after doing all edges, the polygon is fully clipped

<lcf<h<l<li<

« for each polygon vertex

« decide what to do based on 4 possibilities
* is vertex inside or outside?
* is previous vertex inside or outside?

Review: Sutherland-Hodgeman Clipping

» edge from p[i-1] to p[i] has four cases
» decide what to add to output vertex list

inside outside 1inside outside
— -
pl i]¥/ pli-1] pli
I p[i] output I i output
|

inside

e

-~

I no output |

outside

pli]

pli-1]

inside

pli]

K

outside

pli-1]

i output
p[i] output

Review: Painter’s Algorithm

» draw objects from back to front

» problems: no valid visibility order for
* Intersecting polygons
* cycles of non-intersecting polygons possible

10

Binary Space Partition Trees (1979)

 BSP Tree: partition space with binary tree of
planes

* idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

* preprocessing: create binary tree of planes

* runtime: correctly traversing this tree
enumerates objects from back to front

11

Creating BSP Trees: Objects

Creating BSP Trees: Objects

N

tE6eE 666e

13

Creating BSP Trees: Objects

P

56 66 666 ©

14

Creating BSP Trees: Objects

15

Creating BSP Trees: Objects

16

Splitting Objects

* No bunnies were harmed in previous
example

 but what if a splitting plane passes through
an object?
» split the object; give half to each node

17

Traversing BSP Trees

* tree creation independent of viewpoint
* preprocessing step
* tree traversal uses viewpoint
* runtime, happens for many different viewpoints

* each plane divides world into near and far
- for given viewpoint, decide which side is near and
which is far

» check which side of plane viewpoint is on
independently for each tree vertex

* tree traversal differs depending on viewpoint!
* recursive algorithm

* recurse on far side

» draw object

* recurse on near side

18

Traversing BSP Trees

qguery: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

renderBSP (BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;
renderBSP (far) ;
if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

19

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

21

BSP Trees : Viewpoint A

= decide independently at
each tree vertex

= not just left or right child!

22

BSP Trees : Viewpoint A

23

BSP Trees : Viewpoint A

24

BSP Trees : Viewpoint A

25

BSP Trees : Viewpoint A

26

BSP Trees : Viewpoint A

27

BSP Trees : Viewpoint A

28

BSP Trees : Viewpoint A

29

BSP Trees : Viewpoint A

30

BSP Trees : Viewpoint A

31

BSP Trees : Viewpoint A

32

BSP Trees : Viewpoint B

33

BSP Trees : Viewpoint B

34

BSP Tree Traversal: Polygons

split along the plane defined by any polygon
from scene

classify all polygons into positive or negative
half-space of the plane

* if a polygon intersects plane, split polygon into
two and classify them both

recurse down the negative half-space
recurse down the positive half-space

35

BSP Demo

 useful demo:
http.//symbolcraft.com/graphics/bsp

36

Summary: BSP Trees

* pros:

simple, elegant scheme

correct version of painter’s algorithm back-to-front rendering
approach

- was very popular for video games (but getting less so)
* cons.

slow to construct tree: O(n log n) to split, sort
splitting increases polygon count: O(n?) worst-case

computationally intense preprocessing stage restricts algorithm to
static scenes

37

Clarification: BSP Demo

 order of insertion can affect half-plane extent

38

Summary: BSP Trees

* pros:

simple, elegant scheme

correct version of painter’s algorithm back-to-front rendering
approach

- was very popular for video games (but getting less so)
* cons.

slow to construct tree: O(n log n) to split, sort
splitting increases polygon count: O(n?) worst-case

computationally intense preprocessing stage restricts algorithm to
static scenes

39

The Z-Buffer Algorithm (mid-70’s)

- BSP trees proposed when memory was
expensive

- first 512x512 framebuffer was >$50,000!
« Ed Catmull proposed a radical new
approach called z-buffering
* the big idea:

* resolve visibility independently at each
pixel

40

The Z-Buffer Algorithm

* we know how to rasterize polygons into an
Image discretized into pixels:

41

The Z-Buffer Algorithm

* what happens if multiple primitives occupy
the same pixel on the screen?

» which is allowed to paint the pixel?

42

The Z-Buffer Algorithm

* Idea: retain depth after projection transform

 each vertex maintains z coordinate
* relative to eye point
* can do this with canonical viewing volumes

43

The Z-Buffer Algorithm

* augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel

- at frame beginning, initialize all pixel depths
to x

» when rasterizing, interpolate depth (Z)
across polygon

» check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

» don’t write pixel if its Z value is more distant
than the Z value already stored there

44

Interpolating Z

 barycentric coordinates

* interpolate Z like other
planar parameters

45

Z-Buffer

- store (r,g,b,z) for each pixel
» typically 8+8+8+24 bits, can be more

for all i,j {
Depth[1i, j]
Image[i, j]
}
for all polygons P {
for all pixels in P {
if (Z2_pixel < Depth[i,j]) {
Image[i, J] C pixel
Depth|[i, j] Z pixel
}

MAX DEPTH
BACKGROUND COLOUR

}
}

46

* reminder: perspective transformation maps

Depth Test Precision

eye-space (view) z to NDC z

c o o M

* thus:

0 A O]x] [Ex+ AZ]
F B O]yl [Fy+Bz
0 C Dz) Cz+D
0 -1 0]l ~Z
ANDe =T C"'E

Leye

1
1

Ex

—+ Az

<
Fy

<

+ Bz

o

1

v

/
)
/

47

Correction: Ortho Camera Projection
week4.day?2, slide 18

» camera’s back plane o Ix 7 1 0 0 0]
parallel to lens

* Infinite focal length
* no perspective

convergence
’ j 5 [2 0 0 _ right +left |
- x and y coordinates do right ~lefi right ~lefi
not change with respect 0 : 0 lpxio
])]] pP'= top — bot top —bot |p
to z in this projection . . -2 far+near
'D 0 0 A' 'x' 'Dx_l_A' far — near far — near
0O E 0 B|y| |Ey+B |0 0 0 I
0 0 F C|z| |Fz+C
0o 0 0 11] 48

Depth Test Precision

* therefore, depth-buffer essentially stores 1/z,
rather than z!

* issue with integer depth buffers

* high precision for near objects
* low precision for far objects

A
ZNDC

n £ Pere

49

Depth Test Precision

low precision can lead to depth fighting for far objects

 two different depths in eye space get mapped to same
depth in framebuffer

 which object “wins” depends on drawing order and scan-
conversion

gets worse for larger ratios f:n
* rule of thumb: f:n < 1000 for 24 bit depth buffer

with 16 bits cannot discern millimeter differences in
objects at 1 km distance

demo:
sjbaker.org/steve/omniv/love _your z buffer.html

50

Z-Buffer Algorithm Questions

how much memory does the Z-buffer use?

does the image rendered depend on the
drawing order?

does the time to render the image depend on
the drawing order?

how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

51

Z-Buffer Pros

simple!!!

easy to implement in hardware

» hardware support in all graphics cards today
polygons can be processed in arbitrary order
easily handles polygon interpenetration

enables deferred shading

* rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

52

Z-Buffer Cons

» poor for scenes with high depth complexity

* need to render all polygons, even if
most are invisible

L]
L]

eye

» shared edges are handled inconsistently
* ordering dependent

53

Z-Buffer Cons

* requires lots of memory
* (e.g. 1280x1024x32 bits)
* requires fast memory
» Read-Modify-Write in inner loop
* hard to simulate translucent polygons

- we throw away color of polygons behind
closest one

» works if polygons ordered back-to-front

» extra work throws away much of the speed
advantage

54

Hidden Surface Removal

* two kinds of visibility algorithms
* object space methods
* Image space methods

55

Object Space Algorithms

determine visibility on object or polygon level
* using camera coordinates

resolution independent

» explicitly compute visible portions of polygons
early in pipeline

- after clipping

requires depth-sorting

* painter’s algorithm

- BSP trees

56

Image Space Algorithms

» perform visibility test for in screen coordinates
* limited to resolution of display
« Z-buffer: check every pixel independently

» performed late in rendering pipeline

57

Projective Rendering Pipeline

glVertex3f(x,y,z)
object world viewing
alter w
OCS WCS VCS _ glFrustum(...)
modeling viewing > pr?ectlon
— P ion|~ | transformation| . .
transformation transformation clipping
glTranslatef(x,y,z) gluLookAft(...) | w CCS
glRotatef(th,x,y,z) *Z

perspective _
division |normalized

OCS - object coordinate system

glutlnitWindowSize(w,h) device
WCS - world coordinate system glViewport(x,y,a,b) L NDCS
VCS - viewing coordinate system wewport_
transformation
CCS - clipping coordinate system | device
v
NDCS - normalized device coordinate system DCS

DCS - device coordinate system >8

Rendering Pipeline

object world viewing clipping
CS WCS VCS CCS

lModeI/View|| L | Perspective . Iw
> Transform. Lighting Transform. Clipping

Geometry
Database

(4D)
normalized
device
NDCS
screen
device SCS
DCS (3D) (2D)

. Scan : Depth _ Frame-
.‘Conversioni l Uzdailie || Test [Blending buffer

59

