
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Clipping II, Hidden Surfaces I

Week 8, Fri Mar 12

2

News
• midterms returned, solutions out
• unscaled average 52, scaled average 62

3

P1 Hall of Fame: Honorable Mentions

David Roodnick

Shawn Luo

Pierre Jondeau

4

P1 Hall of Fame: Winner

Sung-Hoo Kim

5

Correction: Blinn-Phong Model

• variation with better physical interpretation
• Jim Blinn, 1977

• h: halfway vector
• h must also be explicitly normalized: h / |h|
• highlight occurs when h near n

ll

nn
vvhh

!

Iout (x) = Iin (x)(k
s
(h•n)

n
shiny);with h = (l + v) /2

6

Review: Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

7

Review: Radiosity

[IBM][IBM]

• capture indirect diffuse-diffuse light exchange
• model light transport as flow with conservation of energy until

convergence
• view-independent, calculate for whole scene then browse from any

viewpoint
• divide surfaces into small patches
• loop: check for light exchange between all pairs

• form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpgescience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg
8

Review: Subsurface Scattering
• light enters and leaves at different

locations on the surface
• bounces around inside

• technical Academy Award, 2003
• Jensen, Marschner, Hanrahan

9

Review: Non-Photorealistic Rendering
• simulate look of hand-drawn sketches or

paintings, using digital models

www.red3d.com/cwr/npr/
10

Review: Non-Photorealistic Shading
• cool-to-warm shading:
• draw silhouettes: if , e=edge-eye vector
• draw creases: if

!

(e "n0)(e "n1) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

(n
0
"n

1
) # threshold

standard cool-to-warm with edges/creases
!

k
w

=
1+ n " l

2
,c = k

w
c
w

+ (1# k
w
)c

c

11

Review: Clipping

• analytically calculating the portions of
primitives within the viewport

12

Review: Clipping Lines To Viewport
• combining trivial accepts/rejects

• trivially accept lines with both endpoints inside all edges
of the viewport

• trivially reject lines with both endpoints outside the same
edge of the viewport

• otherwise, reduce to trivial cases by splitting into two
segments

13

Cohen-Sutherland Line Clipping

• outcodes
• 4 flags encoding position of a point relative to

top, bottom, left, and right boundary

• OC(p1)=0010
• OC(p2)=0000
• OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

14

Cohen-Sutherland Line Clipping

• assign outcode to each vertex of line to test
• line segment: (p1,p2)

• trivial cases
• OC(p1)== 0 && OC(p2)==0

• both points inside window, thus line segment completely visible
(trivial accept)

• (OC(p1) & OC(p2))!= 0
• there is (at least) one boundary for which both points are outside

(same flag set in both outcodes)
• thus line segment completely outside window (trivial reject)

15

Cohen-Sutherland Line Clipping

• if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses (how?)
• intersect line with edge (how?)
• discard portion on wrong side of edge and assign

outcode to new vertex
• apply trivial accept/reject tests; repeat if necessary

16

Cohen-Sutherland Line Clipping
• if line cannot be trivially accepted or rejected,

subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses
• check against edges in same order each time

• for example: top, bottom, right, left

A

B

D E
C

17

Cohen-Sutherland Line Clipping

• intersect line with edge

A

B

D E
C

18

• discard portion on wrong side of edge and assign
outcode to new vertex

• apply trivial accept/reject tests and repeat if
necessary

Cohen-Sutherland Line Clipping

A

B

D
C

19

Viewport Intersection Code

• (x1, y1), (x2, y2) intersect vertical edge at xright
• yintersect = y1 + m(xright – x1)
• m=(y2-y1)/(x2-x1)

• (x1, y1), (x2, y2) intersect horiz edge at ybottom
• xintersect = x1 + (ybottom – y1)/m
• m=(y2-y1)/(x2-x1)

(x2, y2)
(x1, y1) xright

(x2, y2)

(x1, y1)
ybottom

20

Cohen-Sutherland Discussion
• key concepts

• use opcodes to quickly eliminate/include lines
• best algorithm when trivial accepts/rejects are

common
• must compute viewport clipping of remaining

lines
• non-trivial clipping cost
• redundant clipping of some lines

• basic idea, more efficient algorithms exist

21

Line Clipping in 3D
• approach

• clip against parallelpiped in NDC
• after perspective transform

• means that clipping volume always the same
• xmin=ymin= -1, xmax=ymax= 1 in OpenGL

• boundary lines become boundary planes
• but outcodes still work the same way
• additional front and back clipping plane

• zmin = -1, zmax = 1 in OpenGL

22

Polygon Clipping

• objective
• 2D: clip polygon against rectangular window

• or general convex polygons
• extensions for non-convex or general polygons

• 3D: clip polygon against parallelpiped

23

Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments

24

• what happens to a triangle during clipping?
• some possible outcomes:

• how many sides can result from a triangle?
• seven

triangle to triangle

Why Is Clipping Hard?

triangle to quad triangle to 5-gon

25

• a really tough case:

Why Is Clipping Hard?

concave polygon to multiple polygons

26

Polygon Clipping

• classes of polygons
• triangles
• convex
• concave
• holes and self-intersection

27

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

28

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

29

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

30

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

31

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

32

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

33

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

34

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

35

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

36

Sutherland-Hodgeman Algorithm
• input/output for whole algorithm

• input: list of polygon vertices in order
• output: list of clipped polygon vertices consisting of old vertices

(maybe) and new vertices (maybe)
• input/output for each step

• input: list of vertices
• output: list of vertices, possibly with changes

• basic routine
• go around polygon one vertex at a time
• decide what to do based on 4 possibilities

• is vertex inside or outside?
• is previous vertex inside or outside?

37

Clipping Against One Edge
• p[i] inside: 2 cases

outsideoutsideinsideinside insideinside outsideoutside

p[i]p[i]

p[i-1]p[i-1]

output: output: p[i]p[i]

p[i]p[i]

p[i-1]p[i-1]pp

output: output: p,p, p[i]p[i] 38

Clipping Against One Edge
• p[i] outside: 2 cases

p[i]p[i]

p[i-1]p[i-1]

output: output: pp

p[i]p[i]

p[i-1]p[i-1]

pp

output: nothingoutput: nothing

outsideoutsideinsideinside insideinside outsideoutside

39

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {
if(p[i] inside edge) {
 if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
 else {
 p= intersect(p[i-1], p[i], edge); output p, p[i];
 }
} else { // p[i] is outside edge
if(p[i-1] inside edge) {
 p= intersect(p[i-1], p[I], edge); output p;
}

}
} 40

Sutherland-Hodgeman Example

insideinside outsideoutside

p0p0

p1p1

p2p2

p3p3 p4p4

p5p5p7p7 p6p6

41

Sutherland-Hodgeman Discussion
• similar to Cohen/Sutherland line clipping

• inside/outside tests: outcodes
• intersection of line segment with edge:

window-edge coordinates
• clipping against individual edges independent

• great for hardware (pipelining)
• all vertices required in memory at same time

• not so good, but unavoidable
• another reason for using triangles only in

hardware rendering

42

Hidden Surface Removal

43

Occlusion

• for most interesting scenes, some polygons
overlap

• to render the correct image, we need to
determine which polygons occlude which

44

Painter’s Algorithm
• simple: render the polygons from back to

front, “painting over” previous polygons

• draw blue, then green, then orange
• will this work in the general case?

45

Painter’s Algorithm: Problems

• intersecting polygons present a problem
• even non-intersecting polygons can form a

cycle with no valid visibility order:

46

Analytic Visibility Algorithms
• early visibility algorithms computed the set of visible polygon

fragments directly, then rendered the fragments to a display:

47

Analytic Visibility Algorithms

• what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

• answer:
O(n2)

48

Analytic Visibility Algorithms

• so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

• we’ll talk about one:
• Binary Space Partition (BSP) Trees

49

Binary Space Partition Trees (1979)

• BSP Tree: partition space with binary tree of
planes
• idea: divide space recursively into half-spaces

by choosing splitting planes that separate
objects in scene

• preprocessing: create binary tree of planes
• runtime: correctly traversing this tree

enumerates objects from back to front

50

Creating BSP Trees: Objects

51

Creating BSP Trees: Objects

52

Creating BSP Trees: Objects

53

Creating BSP Trees: Objects

54

Creating BSP Trees: Objects

55

Splitting Objects

• no bunnies were harmed in previous
example

• but what if a splitting plane passes through
an object?
• split the object; give half to each node

Ouch

56

Traversing BSP Trees
• tree creation independent of viewpoint

• preprocessing step
• tree traversal uses viewpoint

• runtime, happens for many different viewpoints
• each plane divides world into near and far

• for given viewpoint, decide which side is near and
which is far

• check which side of plane viewpoint is on
independently for each tree vertex

• tree traversal differs depending on viewpoint!
• recursive algorithm

• recurse on far side
• draw object
• recurse on near side

57

Traversing BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
 renderBSP(near);

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

58

BSP Trees : Viewpoint A

59

BSP Trees : Viewpoint A

F N

F

N

60

BSP Trees : Viewpoint A

F NF
N

FN

 decide independently at
each tree vertex

 not just left or right child!

61

BSP Trees : Viewpoint A

F N

F

N

NF

FN

62

BSP Trees : Viewpoint A

F N

F

N

NF

FN

63

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

64

BSP Trees : Viewpoint A

F N
F N

FN

FN NF

1

2

1 2

65

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

66

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

1 2

67

BSP Trees : Viewpoint A

F N

F

N
FN

FN

N F

NF

1

2

3

1 2

3
68

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4

F N

1 2

34

69

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

F N

1 2

34

5

70

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

1 2

34

5

6

78

96

7
8

9

FN

FN

FN

71

BSP Trees : Viewpoint B

N F

F

N F

N

FN

F N

FNF N

N F

72

BSP Trees : Viewpoint B

N F

F

N F

N

FN

1

34

2

F N

FNF N

N F5

6

7

891

2

3

4

5

6

7

9

8

73

BSP Tree Traversal: Polygons

• split along the plane defined by any polygon
from scene

• classify all polygons into positive or negative
half-space of the plane
• if a polygon intersects plane, split polygon into

two and classify them both
• recurse down the negative half-space
• recurse down the positive half-space

74

BSP Demo

• useful demo:
http://symbolcraft.com/graphics/bsp

75

Summary: BSP Trees
• pros:

• simple, elegant scheme
• correct version of painter’s algorithm back-to-front rendering

approach
• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort
• splitting increases polygon count: O(n2) worst-case
• computationally intense preprocessing stage restricts algorithm to

static scenes

76

Clarification: BSP Demo

• order of insertion can affect half-plane extent

77

Summary: BSP Trees
• pros:

• simple, elegant scheme
• correct version of painter’s algorithm back-to-front rendering

approach
• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort
• splitting increases polygon count: O(n2) worst-case
• computationally intense preprocessing stage restricts algorithm to

static scenes

