University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Clipping Il, Hidden Surfaces |

Week 8, Fri Mar 12

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

» midterms returned, solutions out
» unscaled average 52, scaled average 62

P1 Hall of Fame: Honorable Mentions

Pierre Jondeau

Shawn Luo

David Roodnick

P1 Hall of Fame: Winner

Sung-Hoo Kim

Correction: Blinn-Phong Model

« variation with better physical interpretation
* Jim Blinn, 1977

1,,, (%) =], (< (h o) Yowith h = 1+ v) /2

* h: halfway vector
» h must also be explicitly normalized: h / |h|
« highlight occurs when h near n

* "

Review: Ray Tracing

* issues:
* generation of rays
« intersection of rays with geometric primitives
» geometric transformations
« lighting and shading
- efficient data structures so we don’t have to
test intersection with every object

Review: Radiosity
« capture indirect diffuse-diffuse light exchange

+ model light transport as flow with conservation of energy until
convergence

« view-independent, calculate for whole scene then browse from any
viewpoint

« divide surfaces into small patches
« loop: check for light exchange between all pairs
« form factor: orientation of one patch wrt other patch (n x n matrix)

Review: Subsurface Scattering

« light enters and leaves at different
locations on the surface
« bounces around inside

« technical Academy Award, 2003

« Jensen, Marschner, Hanrahan . la . ;

Review: Non-Photorealistic Rendering

» simulate look of hand-drawn sketches or
paintings, using digital models

www.red3d.com/cwr/npr/

Review: Non-Photorealistic Shading

- cool-to-warm shading: &, =1+ 1!

+ draw silhouettes: if (e n,)(e-n,) =<0, e=edge-eye vector
* draw creases: if (n,-n,) < threshold

=k, +(-k,)c,

standard cool-to-warm with edges/creases

hitp://www.cs.utah.ed 10

html

Review: Clipping

« analytically calculating the portions of
primitives within the viewport

Review: Clipping Lines To Viewport

« combining trivial accepts/rejects
« trivially accept lines with both endpoints inside all edges
of the viewport
« trivially reject lines with both endpoints outside the same
edge of the viewport

« otherwise, reduce to trivial cases by splitting into two
segments

N.\.f
N

Cohen-Sutherland Line Clipping

 outcodes

+ 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

1010 1000 1001

- OC(p1)=0010 Y

« OC(p2)=0000 epl
. OC(p3)=1001 0010 | 0000 | 0001
op2
0110 0100 0101

X=X i XX omax

V=V min

Cohen-Sutherland Line Clipping

« assign outcode to each vertex of line to test
« line segment: (p1,p2)

« trivial cases

-+ OC(p1)== 0 8& OC(p2)==0

« both points inside window, thus line segment completely visible
(trivial accept)

« (OC(p1) & OC(p2))!= 0

« there is (at least) one boundary for which both points are outside
(same flag set in both outcodes)

« thus line segment completely outside window (trivial reject)

Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

pick an edge that the line crosses (how?)
intersect line with edge (how?)

discard portion on wrong side of edge and assign
outcode to new vertex

apply trivial accept/reject tests; repeat if necessary

Cohen-Sutherland Line Clipping

« if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

« pick an edge that the line crosses

« check against edges in same order each time
« for example: top, bottom, right, left

A

Cohen-Sutherland Line Clipping

* intersect line with edge

Xl

Cohen-Sutherland Line Clipping

« discard portion on wrong side of edge and assign
outcode to new vertex

D,

c

Xl

« apply trivial accept/reject tests and repeat if
necessary

Viewport Intersection Code

* (X4, Y1), (%o, yp) intersect vertical edge at Xyigp
* Yintersect = ¥1 ¥ MXyight = X1)
* M=(ypy1)/(Xo-%4)
(X2, ¥2)

(%1 1) Xright

* (X4, Y1), (Xo, ¥,) intersect horiz edge at yput10m
* Xintersect = *1 + (Ypottom = Y1)/m
* m=(yp-yq)/(Xp-X4) (X2, ¥2)

Ybottom
(x4, y1)

Cohen-Sutherland Discussion

* key concepts

= use opcodes to quickly eliminate/include lines

« best algorithm when trivial accepts/rejects are
common

» must compute viewport clipping of remaining
lines

« non-trivial clipping cost
« redundant clipping of some lines
« basic idea, more efficient algorithms exist

Line Clipping in 3D
* approach
« clip against parallelpiped in NDC
- after perspective transform

» means that clipping volume always the same
* xmin=ymin= -1, xmax=ymax= 1 in OpenGL

* boundary lines become boundary planes
« but outcodes still work the same way
« additional front and back clipping plane
» zmin = -1, zmax = 1 in OpenGL

Polygon Clipping
* objective
= 2D: clip polygon against rectangular window
= or general convex polygons

« extensions for non-convex or general polygons
« 3D: clip polygon against parallelpiped

Polygon Clipping

* not just clipping all boundary lines
* may have to introduce new line segments

~_ /R

Why Is Clipping Hard?

» what happens to a triangle during clipping?
* some possible outcomes:

>

triangle to triangle

-

triangle to 5-gon
* how many sides can result from a triangle?
- seven

triangle to quad

Why Is Clipping Hard?

« areally tough case:

concave polygon to multiple polygons

Polygon Clipping

* classes of polygons

« triangles

+ convex

 concave

* holes and self-intersection

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

4
<7

27

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

/

4 <

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

31

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

.

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

35

Sutherland-Hodgeman Algorithm

« input/output for whole algorithm

« input: list of polygon vertices in order

« output: list of clipped polygon vertices consisting of old vertices
(maybe) and new vertices (maybe)

« input/output for each step

« input: list of vertices
« output: list of vertices, possibly with changes

* basic routine

 go around polygon one vertex at a time

« decide what to do based on 4 possibilities
« is vertex inside or outside?
« is previous vertex inside or outside?

Clipping Against One Edge

« p[i] inside: 2 cases

inside outside inside | outside
pli-1]

pli]

output: p[i] output: p, p[i] 3

Clipping Against One Edge

« p[i] outside: 2 cases

outside inside | outside
pli]

inside
pli-1]

Pl pli-1]

output: p output: nothing 3

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {
for(i=0;i<n;i+t+){
if(p[i] inside edge) {
if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
else {
p= intersect(p[i-1], p[i], edge); output p, p[i];
}
Yelse { /I pli] is outside edge
if(p[i-1] inside edge) {
p= intersect(p[i-1], p[l], edge); output p;
}

Sutherland-Hodgeman Example

inside outside

Sutherland-Hodgeman Discussion

+ similar to Cohen/Sutherland line clipping
* inside/outside tests: outcodes
« intersection of line segment with edge:
window-edge coordinates
« clipping against individual edges independent
« great for hardware (pipelining)
= all vertices required in memory at same time
* not so good, but unavoidable

« another reason for using triangles only in
hardware rendering

Hidden Surface Removal

Occlusion

« for most interesting scenes, some polygons

overlap
Ix
¥ %

« to render the correct image, we need to
determine which polygons occlude which

43

Painter’s Algorithm

simple: render the polygons from back to
front, “painting over” previous polygons

k|- B

- draw blue, then green, then orange
will this work in the general case?

Painter’s Algorithm: Problems

* intersecting polygons present a problem

* even non-intersecting polygons can form a
cycle with no valid visibility order:

Analytic Visibility Algorithms

- early visibility algorithms computed the set of visible polygon
fragments directly, then rendered the fragments to a display:

Analytic Visibility Algorithms

» what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

* answer:

O(n?)

47

Analytic Visibility Algorithms

so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

we’ll talk about one:
* Binary Space Partition (BSP) Trees

Binary Space Partition Trees (1979)

» BSP Tree: partition space with binary tree of

planes

- idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

* preprocessing: create binary tree of planes

« runtime: correctly traversing this tree
enumerates objects from back to front

Creating BSP Trees: Objects
®

s
® ‘ﬁgﬁ

Creating BSP Trees: Objects

®
S §\
sEEee Seee

&
ce®
&

L XY

51

Creating BSP Trees: Objects

66 &6

®
®

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Splitting Objects

* no bunnies were harmed in previous
example

* but what if a splitting plane passes through
an object?
« split the object; give half to each node

AT
ﬁ"@%:’n

55

Traversing BSP Trees

« tree creation independent of viewpoint
« preprocessing step
* tree traversal uses viewpoint
= runtime, happens for many different viewpoints
« each plane divides world into near and far
« for given viewpoint, decide which side is near and
which is far

« check which side of plane viewpoint is on
independently for each tree vertex

- tree traversal differs depending on viewpoint!
* recursive algorithm

« recurse on far side

« draw object

* recurse on near side

Traversing BSP Trees

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

renderBSP (BSPtree *T)

BSPtree *near, *far;

if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;

renderBSP (far) ;

if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

= decide independently at %
each tree vertex '

= not just left or right child!

&

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

e P

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

- P4
bl

© <

)

%

BSP Tree Traversal: Polygons

split along the plane defined by any polygon
from scene

classify all polygons into positive or negative
half-space of the plane

- if a polygon intersects plane, split polygon into
two and classify them both

recurse down the negative half-space
recurse down the positive half-space

BSP Demo

« useful demo:
http.://symbolcraft.com/qraphics/bsp

Summary: BSP Trees

« pros:
+ simple, elegant scheme
« correct version of painter’s algorithm back-to-front rendering
approach
+ was very popular for video games (but getting less so)
* cons:
« slow to construct tree: O(n log n) to split, sort
- splitting increases polygon count: O(n?) worst-case
« computationally intense preprocessing stage restricts algorithm to
static scenes

75

Clarification: BSP Demo

« order of insertion can affect half-plane extent

Summary: BSP Trees

© pros:
« simple, elegant scheme
« correct version of painter’s algorithm back-to-front rendering
approach
« was very popular for video games (but getting less so)
* cons:
« slow to construct tree: O(n log n) to split, sort
« splitting increases polygon count: O(n2) worst-case

« computationally intense preprocessing stage restricts algorithm to
static scenes

