University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Advanced Rendering Il, Clipping |

Week 8, Wed Mar 10

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

* Project 3 out
* due Fri Mar 26, 5pm
* raytracer
« template code has significant functionality

« clearly marked places where you need to fill in
required code

News

* Project 2 F2F grading done

= if you have not signed up, do so immediately
with glj3 AT cs.ubc.ca

« penalty already for being late
« bigger penalty if we have to hunt you down

Reading for Advanced Rendering

* FCG Sec 8.2.7 Shading Frequency
* FCG Chap 4 Ray Tracing

* FCG Sec 13.1 Transparency and Refraction
+ (10.1-10.7 2nd ed)

» Optional - FCG Chap 24: Global lllumination

Review: Specifying Normals

OpenGL state machine

« uses last normal specified

« if no normals specified, assumes all identical
per-vertex normals

gINormal3f(1,1,1);

glVertex3f(3.4.5);

gNormal3f(1,1,0);

glVertex3f(10.5.2);
per-face normals

gNormal3f(1.1,1):

gIVertex3f(3.4.5);

alVertex3f(10.5.2);
normal interpreted as direction from vertex location

can automatically normalize (computational cost)
glEnable(GL_NORMALIZE);

Review: Recursive Ray Tracing
« ray tracing can handle
« reflection (chrome/mirror)
- refraction (glass) Light
. i
sha.dows " Eye [_Image Plane St?urce
« one primary ray per pixel
« spawn secondary rays "'o‘;v"
« reflection, refraction
« if another object is hit, recurse to find
its color
« shadow
« cast ray from intersection point to
light source, check if intersects
another object
* termination criteria
* no intersection (ray exits scene) Refracted
= max bounces (recursion depth) Ray
- attenuated below threshold

Shadow
Rays

Review/Correction:
Recursive Ray Tracing

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end;

Review: Reflection and Refraction

« refraction: mirror effects n
- perfect specular reflection 6|6

« refraction: at boundary
* Snell's Law d n

« light ray bends based on
refractive indices c,, ¢, &

¢ sinf), =c,sin6,

Review: Ray Tracing

issues:

= generation of rays

* intersection of rays with geometric primitives

» geometric transformations

« lighting and shading

« efficient data structures so we don’t have to
test intersection with every object

Ray-Triangle Intersection

» method in book is elegant but a bit complex

« easier approach: triangle is just a polygon
* intersect ray with plane
normal:n=(b-a)x(c-a)

ray :x =e+td
plane:(p-x)'n=0= X=p-n
pn _(e-p)n

=e+id=1=
d-n
pisaorborc
« check if ray inside triangle

Ray-Triangle Intersection

+ check if ray inside triangle

« check if point counterclockwise from each edge (to
its left)

= check if cross product points in same direction as
normal (i.e. if dot is positive)
(b-a)x(x-a)'n=0
(c=b)x(x=-b)'n=0
(@a-c)x(x-c)'n=0
b

* more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf "

Ray Tracing

* issues:
= generation of rays
« intersection of rays with geometric primitives
» geometric transformations
« lighting and shading

- efficient data structures so we don’t have to
test intersection with every object

Geometric Transformations

« similar goal as in rendering pipeline:
» modeling scenes more convenient using different
coordinate systems for individual objects
* problem
« not all object representations are easy to transform

« problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

« ray tracing has different solution
« ray itself is always affine invariant
« thus: transform ray into object coordinates!

Geometric Transformations

* ray transformation
- for intersection test, it is only important that ray is in
same coordinate system as object representation
« transform all rays into object coordinates

« transform camera point and ray direction by inverse of
model/view matrix

+ shading has to be done in world coordinates (where
light sources are given)

- transform object space intersection point to world
coordinates

« thus have to keep both world and object-space ray

Ray Tracing

* issues:
* generation of rays
« intersection of rays with geometric primitives
» geometric transformations
« lighting and shading
- efficient data structures so we don’t have to
test intersection with every object

Local Lighting

* local surface information (normal...)

« for implicit surfaces F(x,y,z)=0: normal n(x,y,z)
can be easily computed at every intersection
point using the gradient

OF (x,y,z)/ ox

n(x,y,z) =| 9F (x,y,2)/ dy

JIF (x,y,z)/ 0z

F(x,p,z)=x"+y" +z° =17

* example:
2x
n(x,y,z)=|2y
2z

needs to be normalized!

16

Local Lighting

* local surface information
- alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline
* now easy to use Phong shading!
- as discussed for rendering pipeline
- difference with rendering pipeline:
« interpolation cannot be done incrementally
* have to compute barycentric coordinates for
every intersection point (e.g plane equation for

Global Shadows

* approach
« to test whether point is in shadow, send out
shadow rays to all light sources

« if ray hits another object, the point lies in
shadow

Global Reflections/Refractions

+ approach

« send rays out in reflected and refracted direction to
gather incoming light

« that light is multiplied by local surface color and
added to result of local shading

*

Total Internal Reflection
As the angle of incidence increases from 0 to greater angles ...

o fa° 2° 70
4
!o w5 o
..the refracted ray di (there is less refraction)

the reflected ray becomes brighter (there is more reflection)

triangles) ..the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.
17 18 19 p: i com/Cl| J14L3b.html 20
Ray Tracing Optimized Ray-Tracing Example Images Radiosity
* issues: * basic algorithm simple but very expensive « radiosity definition

* generation of rays

« intersection of rays with geometric primitives

» geometric transformations

« lighting and shading

« efficient data structures so we don’t have to
test intersection with every object

« optimize by reducing:
« number of rays traced
+ number of ray-object intersection calculations
* methods
* bounding volumes: boxes, spheres
« spatial subdivision
* uniform
- BSP trees
« (more on this later with collision)

22

« rate at which energy emitted or reflected by a surface
« radiosity methods
- capture diffuse-diffuse bouncing of light
« indirect effects difficult to handle with raytracing

Radiosity

« illumination as radiative heat transfer

energy thermometer/eye
packets

reflective objects

« conserve light energy in a volume

+ model light transport as packet flow until convergence
« solution captures diffuse-diffuse bouncing of light

* view-independent technique
« calculate solution for entire scene offline
« browse from any viewpoint in realtime

Radiosity

« divide surfaces into small patches
« loop: check for light exchange between all pairs
« form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu edu aullectureiog/Globallluminationmage/continuous /g
26

Better Global lllumination
ray-tracing: great specular, approx. diffuse
« view dependent
radiosity: great diffuse, specular ignored
« view independent, mostly-enclosed volumes
photon mapping: superset of raytracing and radiosity
« view dependent, handles both diffuse and specular well
raytracing hoton mappin

eraphics.ucsd.edu/~henrik/images/cbox.html 27

Subsurface Scattering: Translucency

« light enters and leaves at different locations
on the surface
» bounces around inside

« technical Academy Award, 2003
« Jensen, Marschner, Hanrahan

y
i

e Ny
N

A
A

s
e
&

Subsurface Scattering: Marble

Subsurface Scattering: Milk vs. Paint

Subsurface Scattering: Skin

31

Subsurface Scattering: Skin

Non-Photorealistic Rendering

 simulate look of hand-drawn sketches or
paintings, using digital models

Reading for Clipping

* FCG Sec 8.1.3-8.1.6 Clipping
» FCG Sec 8.4 Culling
* (12.1-12.4 2nd ed)

Rendering Pipeline

Model/View| L Perspecti -
Transform. Lighting Transform. Clipping —‘

Geometry

Database | |

Clipping
Consveearrs‘ion 4 Texturing D:epst:‘ Blending ?:;::
www.redeAcom/cwr/npr/ - 34 5 %
Next Topic: Clipping Clipping Why Clip? Line Clipping
* we've been assuming that all primitives (lines, + analytically calculating the portions of + bad idea to rasterize outside of framebuffer +2D

triangles, polygons) lie entirely within the viewport
« in general, this assumption will not hold:

I

primitives within the viewport

bounds

« also, don’t waste time scan converting pixels
outside window

« could be billions of pixels for very close
objects!

39

« determine portion of line inside an axis-aligned
rectangle (screen or window)

= 3D

 determine portion of line inside axis-aligned
parallelpiped (viewing frustum in NDC)

« simple extension to 2D algorithms

Clipping

« naive approach to clipping lines:
for each line segment
for each edge of viewport
find intersection point
pick “nearest” point
if anything is left, draw it

« what do we mean by “nearest’?

* how can we optimize this? ./‘C/D

A

Trivial Accepts

+ big optimization: trivial accept/rejects
* Q: how can we quickly determine whether a line
segment is entirely inside the viewport?
« A: test both endpoints

N/

Trivial Rejects

* Q: how can we know a line is outside
viewport?

A if both endpoints on wrong side of same
edge, can trivially reject line

N

43

Clipping Lines To Viewport

« combining trivial accepts/rejects

« trivially accept lines with both endpoints inside all edges
of the viewport

« trivially reject lines with both endpoints outside the same
edge of the viewport

« otherwise, reduce to trivial cases by splitting into two

segments

.\

Cohen-Sutherland Line Clipping

« outcodes

+ 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

1010 1000 1001
- OC(p1)=0010 I
- 0C(p2)=0000 °P!
. OC(p3)=10017 0010|0000 | 0001
op2
0110 0100 0101

X=X i X X max

V=V min

Cohen-Sutherland Line Clipping

« assign outcode to each vertex of line to test
« line segment: (p1,p2)
« trivial cases
« OC(p1)==0 && OC(p2)==0
+ both points inside window, thus line segment completely visible
(trivial accept)
« (OC(p1) & OC(p2))!=0
« there is (at least) one boundary for which both points are outside
(same flag set in both outcodes)
« thus line segment completely outside window (trivial reject)

Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

pick an edge that the line crosses (how?)
intersect line with edge (how?)

discard portion on wrong side of edge and assign
outcode to new vertex

apply trivial accept/reject tests; repeat if necessary

47

Cohen-Sutherland Line Clipping

if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded
pick an edge that the line crosses
« check against edges in same order each time

« for example: top, bottom, right, left

e

Cohen-Sutherland Line Clipping

* intersect line with edge

e

Cohen-Sutherland Line Clipping

« discard portion on wrong side of edge and assign
outcode to new vertex

c

e

« apply trivial accept/reject tests and repeat if
necessary

Viewport Intersection Code

* (X4, Y1), (%o, y,) intersect vertical edge at Xyign
* Yintersect = Y1 * r’n(xright - Xy)
* M=(ypy1)/(Xp-%4)

* (X4, Y1), (X9, ¥o) intersect horiz edge at yyqttom
* Xintersect = X1 * (Ybottom — ¥1)/m
> M=(yp-y1)/(Xo-X4) (X2, ¥2)

Ybottom
(X4, ¥1)

Cohen-Sutherland Discussion

* key concepts

« use opcodes to quickly eliminate/include lines

« best algorithm when trivial accepts/rejects are
common

» must compute viewport clipping of remaining
lines

* non-trivial clipping cost
« redundant clipping of some lines
* basic idea, more efficient algorithms exist

Line Clipping in 3D
* approach
« clip against parallelpiped in NDC
- after perspective transform

» means that clipping volume always the same
* xmin=ymin= -1, xmax=ymax= 1 in OpenGL

 boundary lines become boundary planes
* but outcodes still work the same way

« additional front and back clipping plane
+ zmin = -1, zmax = 1 in OpenGL

Polygon Clipping
* objective
+ 2D: clip polygon against rectangular window
« or general convex polygons

« extensions for non-convex or general polygons
= 3D: clip polygon against parallelpiped

Polygon Clipping

* not just clipping all boundary lines
* may have to introduce new line segments

N

~_/ X

Why Is Clipping Hard?

» what happens to a triangle during clipping?
* some possible outcomes:

>

triangle to triangle

>

triangle to 5-gon
* how many sides can result from a triangle?
- seven

triangle to quad

Why Is Clipping Hard?

« areally tough case:

concave polygon to multiple polygons

Polygon Clipping

« classes of polygons

- triangles

* convex

* concave

* holes and self-intersection

Sutherland-Hodgeman Clipping

* basic idea:

« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

<] ?

N

59

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

/

4 <

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

63

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

.

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

67

Sutherland-Hodgeman Algorithm

« input/output for whole algorithm

« input: list of polygon vertices in order

- output: list of clipped polygon vertices consisting of old vertices
(maybe) and new vertices (maybe)

« input/output for each step

« input: list of vertices
« output: list of vertices, possibly with changes

« basic routine

+ go around polygon one vertex at a time

« decide what to do based on 4 possibilities
« is vertex inside or outside?
« is previous vertex inside or outside?

Clipping Against One Edge

« p[i] inside: 2 cases

inside outside inside | outside
pli-1]

plil

output: p[i] output: p, p[i] 6

Clipping Against One Edge

« p[i] outside: 2 cases

inside outside inside | outside
plil

pli-1]

output: p

output: nothing

70

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {
for(i=0;i<n;i++){
if(pli] inside edge) {
if(p[i-1] inside edge) output p[i]; // p[-1]= p[n
else {
p= intersect(p[i-1], p[i], edge); output p, p[i];
}

-1]

}else { /1 pli] is outside edge

if(p[i-1] inside edge) {
p= intersect(p[i-1], p[l], edge); output p;
}

7

Sutherland-Hodgeman Example

inside outside

Sutherland-Hodgeman Discussion

« similar to Cohen/Sutherland line clipping
* inside/outside tests: outcodes
« intersection of line segment with edge:
window-edge coordinates
« clipping against individual edges independent
« great for hardware (pipelining)
« all vertices required in memory at same time
* not so good, but unavoidable

« another reason for using triangles only in
hardware rendering

