
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Advanced Rendering II, Clipping I

Week 8, Wed Mar 10

2

News

• Project 3 out
• due Fri Mar 26, 5pm

• raytracer
• template code has significant functionality
• clearly marked places where you need to fill in

required code

3

News

• Project 2 F2F grading done
• if you have not signed up, do so immediately

with glj3 AT cs.ubc.ca
• penalty already for being late
• bigger penalty if we have to hunt you down

4

Reading for Advanced Rendering

• FCG Sec 8.2.7 Shading Frequency
• FCG Chap 4 Ray Tracing
• FCG Sec 13.1 Transparency and Refraction

• (10.1-10.7 2nd ed)
• Optional - FCG Chap 24: Global Illumination

5

Review: Specifying Normals
• OpenGL state machine

• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

• normal interpreted as direction from vertex location
• can automatically normalize (computational cost)

glEnable(GL_NORMALIZE);

6

Review: Recursive Ray Tracing
• ray tracing can handle

• reflection (chrome/mirror)
• refraction (glass)
• shadows

• one primary ray per pixel
• spawn secondary rays

• reflection, refraction
• if another object is hit, recurse to find

its color
• shadow

• cast ray from intersection point to
light source, check if intersects
another object

• termination criteria
• no intersection (ray exits scene)
• max bounces (recursion depth)
• attenuated below threshold

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray Shadow

Rays

7

Review/Correction:
Recursive Ray Tracing

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;

8

Review: Reflection and Refraction
• refraction: mirror effects

• perfect specular reflection

• refraction: at boundary
• Snell’s Law

• light ray bends based on
refractive indices c1, c2

nd

t

n

9

Review: Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

10

Ray-Triangle Intersection
• method in book is elegant but a bit complex
• easier approach: triangle is just a polygon

• intersect ray with plane

• check if ray inside triangle

!

normal : n = (b" a) # (c " a)

ray : x = e +td

plane : (p" x) $n = 0% x =
p $n

n

p $n

n
= e +td% t = "

(e "p) $n

d $n

p is a or b or c

a

b

c

e

d

x

n

11

Ray-Triangle Intersection
• check if ray inside triangle

• check if point counterclockwise from each edge (to
its left)

• check if cross product points in same direction as
normal (i.e. if dot is positive)

• more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf!

(b" a) # (x " a) $n % 0

(c "b) # (x "b) $n % 0

(a " c) # (x " c) $n % 0
a

b

c

x

n

CCW

12

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

13

Geometric Transformations
• similar goal as in rendering pipeline:

• modeling scenes more convenient using different
coordinate systems for individual objects

• problem
• not all object representations are easy to transform

• problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

• ray tracing has different solution
• ray itself is always affine invariant
• thus: transform ray into object coordinates!

14

Geometric Transformations
• ray transformation

• for intersection test, it is only important that ray is in
same coordinate system as object representation

• transform all rays into object coordinates
• transform camera point and ray direction by inverse of

model/view matrix
• shading has to be done in world coordinates (where

light sources are given)
• transform object space intersection point to world

coordinates
• thus have to keep both world and object-space ray

15

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

16

Local Lighting

• local surface information (normal…)
• for implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

• example:

!
!
!

"

#

$
$
$

%

&

''

''

''

=

zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

2222),,(rzyxzyxF !++=

!
!
!

"

#

$
$
$

%

&

=

z

y

x

zyx

2

2

2

),,(n needs to be normalized!needs to be normalized!

17

Local Lighting
• local surface information

• alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline
• now easy to use Phong shading!

• as discussed for rendering pipeline
• difference with rendering pipeline:

• interpolation cannot be done incrementally
• have to compute barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

18

Global Shadows

• approach
• to test whether point is in shadow, send out

shadow rays to all light sources
• if ray hits another object, the point lies in

shadow

19

Global Reflections/Refractions
• approach

• send rays out in reflected and refracted direction to
gather incoming light

• that light is multiplied by local surface color and
added to result of local shading

20

Total Internal Reflection

http://www.physicsclassroom.com/Class/refrn/U14L3b.html

21

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

22

Optimized Ray-Tracing
• basic algorithm simple but very expensive
• optimize by reducing:

• number of rays traced
• number of ray-object intersection calculations

• methods
• bounding volumes: boxes, spheres
• spatial subdivision

• uniform
• BSP trees

• (more on this later with collision)

23

Example Images

24

Radiosity
• radiosity definition

• rate at which energy emitted or reflected by a surface
• radiosity methods

• capture diffuse-diffuse bouncing of light
• indirect effects difficult to handle with raytracing

25

Radiosity
• illumination as radiative heat transfer

• conserve light energy in a volume
• model light transport as packet flow until convergence
• solution captures diffuse-diffuse bouncing of light

• view-independent technique
• calculate solution for entire scene offline
• browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

26

Radiosity

[IBM][IBM]

• divide surfaces into small patches
• loop: check for light exchange between all pairs

• form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpgescience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg
27

Better Global Illumination
• ray-tracing: great specular, approx. diffuse

• view dependent
• radiosity: great diffuse, specular ignored

• view independent, mostly-enclosed volumes
• photon mapping: superset of raytracing and radiosity

• view dependent, handles both diffuse and specular well
raytracing photon mapping

graphics.ucsd.edu/~henrik/images/cbox.html 28

Subsurface Scattering: Translucency

• light enters and leaves at different locations
on the surface
• bounces around inside

• technical Academy Award, 2003
• Jensen, Marschner, Hanrahan

29

Subsurface Scattering: Marble

30

Subsurface Scattering: Milk vs. Paint

31

Subsurface Scattering: Skin

32

Subsurface Scattering: Skin

33

Non-Photorealistic Rendering
• simulate look of hand-drawn sketches or

paintings, using digital models

www.red3d.com/cwr/npr/
34

Clipping

35

Reading for Clipping

• FCG Sec 8.1.3-8.1.6 Clipping
• FCG Sec 8.4 Culling

• (12.1-12.4 2nd ed)

36

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

37

Next Topic: Clipping
• we’ve been assuming that all primitives (lines,

triangles, polygons) lie entirely within the viewport
• in general, this assumption will not hold:

38

Clipping

• analytically calculating the portions of
primitives within the viewport

39

Why Clip?

• bad idea to rasterize outside of framebuffer
bounds

• also, don’t waste time scan converting pixels
outside window
• could be billions of pixels for very close

objects!

40

Line Clipping

• 2D
• determine portion of line inside an axis-aligned

rectangle (screen or window)
• 3D
• determine portion of line inside axis-aligned

parallelpiped (viewing frustum in NDC)
• simple extension to 2D algorithms

41

Clipping

• naïve approach to clipping lines:
for each line segment
 for each edge of viewport

 find intersection point
 pick “nearest” point
 if anything is left, draw it

• what do we mean by “nearest”?
• how can we optimize this?

A

B

C
D

42

Trivial Accepts
• big optimization: trivial accept/rejects

• Q: how can we quickly determine whether a line
segment is entirely inside the viewport?

• A: test both endpoints

43

Trivial Rejects

• Q: how can we know a line is outside
viewport?

• A: if both endpoints on wrong side of same
edge, can trivially reject line

44

Clipping Lines To Viewport
• combining trivial accepts/rejects

• trivially accept lines with both endpoints inside all edges
of the viewport

• trivially reject lines with both endpoints outside the same
edge of the viewport

• otherwise, reduce to trivial cases by splitting into two
segments

45

Cohen-Sutherland Line Clipping

• outcodes
• 4 flags encoding position of a point relative to

top, bottom, left, and right boundary

• OC(p1)=0010
• OC(p2)=0000
• OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

46

Cohen-Sutherland Line Clipping

• assign outcode to each vertex of line to test
• line segment: (p1,p2)

• trivial cases
• OC(p1)== 0 && OC(p2)==0

• both points inside window, thus line segment completely visible
(trivial accept)

• (OC(p1) & OC(p2))!= 0
• there is (at least) one boundary for which both points are outside

(same flag set in both outcodes)
• thus line segment completely outside window (trivial reject)

47

Cohen-Sutherland Line Clipping

• if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses (how?)
• intersect line with edge (how?)
• discard portion on wrong side of edge and assign

outcode to new vertex
• apply trivial accept/reject tests; repeat if necessary

48

Cohen-Sutherland Line Clipping
• if line cannot be trivially accepted or rejected,

subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses
• check against edges in same order each time

• for example: top, bottom, right, left

A

B

D E
C

49

Cohen-Sutherland Line Clipping

• intersect line with edge

A

B

D E
C

50

• discard portion on wrong side of edge and assign
outcode to new vertex

• apply trivial accept/reject tests and repeat if
necessary

Cohen-Sutherland Line Clipping

A

B

D
C

51

Viewport Intersection Code

• (x1, y1), (x2, y2) intersect vertical edge at xright
• yintersect = y1 + m(xright – x1)
• m=(y2-y1)/(x2-x1)

• (x1, y1), (x2, y2) intersect horiz edge at ybottom
• xintersect = x1 + (ybottom – y1)/m
• m=(y2-y1)/(x2-x1)

(x2, y2)
(x1, y1) xright

(x2, y2)

(x1, y1)
ybottom

52

Cohen-Sutherland Discussion
• key concepts

• use opcodes to quickly eliminate/include lines
• best algorithm when trivial accepts/rejects are

common
• must compute viewport clipping of remaining

lines
• non-trivial clipping cost
• redundant clipping of some lines

• basic idea, more efficient algorithms exist

53

Line Clipping in 3D
• approach

• clip against parallelpiped in NDC
• after perspective transform

• means that clipping volume always the same
• xmin=ymin= -1, xmax=ymax= 1 in OpenGL

• boundary lines become boundary planes
• but outcodes still work the same way
• additional front and back clipping plane

• zmin = -1, zmax = 1 in OpenGL

54

Polygon Clipping

• objective
• 2D: clip polygon against rectangular window

• or general convex polygons
• extensions for non-convex or general polygons

• 3D: clip polygon against parallelpiped

55

Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments

56

• what happens to a triangle during clipping?
• some possible outcomes:

• how many sides can result from a triangle?
• seven

triangle to triangle

Why Is Clipping Hard?

triangle to quad triangle to 5-gon

57

• a really tough case:

Why Is Clipping Hard?

concave polygon to multiple polygons

58

Polygon Clipping

• classes of polygons
• triangles
• convex
• concave
• holes and self-intersection

59

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

60

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

61

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

62

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

63

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

64

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

65

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

66

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

67

Sutherland-Hodgeman Clipping
• basic idea:

• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

68

Sutherland-Hodgeman Algorithm
• input/output for whole algorithm

• input: list of polygon vertices in order
• output: list of clipped polygon vertices consisting of old vertices

(maybe) and new vertices (maybe)
• input/output for each step

• input: list of vertices
• output: list of vertices, possibly with changes

• basic routine
• go around polygon one vertex at a time
• decide what to do based on 4 possibilities

• is vertex inside or outside?
• is previous vertex inside or outside?

69

Clipping Against One Edge
• p[i] inside: 2 cases

outsideoutsideinsideinside insideinside outsideoutside

p[i]p[i]

p[i-1]p[i-1]

output: output: p[i]p[i]

p[i]p[i]

p[i-1]p[i-1]pp

output: output: p,p, p[i]p[i] 70

Clipping Against One Edge
• p[i] outside: 2 cases

p[i]p[i]

p[i-1]p[i-1]

output: output: pp

p[i]p[i]

p[i-1]p[i-1]

pp

output: nothingoutput: nothing

outsideoutsideinsideinside insideinside outsideoutside

71

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {
if(p[i] inside edge) {
 if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
 else {
 p= intersect(p[i-1], p[i], edge); output p, p[i];
 }
} else { // p[i] is outside edge
if(p[i-1] inside edge) {
 p= intersect(p[i-1], p[I], edge); output p;
}

}
} 72

Sutherland-Hodgeman Example

insideinside outsideoutside

p0p0

p1p1

p2p2

p3p3 p4p4

p5p5p7p7 p6p6

73

Sutherland-Hodgeman Discussion
• similar to Cohen/Sutherland line clipping

• inside/outside tests: outcodes
• intersection of line segment with edge:

window-edge coordinates
• clipping against individual edges independent

• great for hardware (pipelining)
• all vertices required in memory at same time

• not so good, but unavoidable
• another reason for using triangles only in

hardware rendering

