C

’)
)]

ST University of British Columbia

oA CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

Lighting/Shading IV,
Advanced Rendering |

Week 7, Fri Mar 5

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

* midterm is Monday, be on time!
 HW2 solutions out

Clarify: Projective Rendering Pipeline

coordinate system point of view!

glVertex3f(x,y,z)
object world viewing
alter w
ocs %W wecs W2V ycs VZ_C _ glFrustum(...)
. modeling . viewing . prOJectlor.\
transformation transformation transformation clipping
glTranslatef(x,y,z) gluLookAt(...) C2N I'w ccS
glRotatef(a,x,y,z) v

perspective

OCS - object coordinate system o | division normgllzed
glutinitWindowSize(w,h) N2D device

WCS - world coordinate system glViewport(x,y,a,b) i NDCS
VCS - viewing coordinate system wewport.
transformation
CCS - clipping coordinate system | device
v
NDCS - normalized device coordinate system DCS

DCS - device coordinate system

Clarify: OpenGL Example

coordinate system point of view!

object world Vi
ocs 92 wcs
modeling viewing
—> . > .
transformation transformation

CCS glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;
gluPerspective(45, 1.0, 0.1,

VCS glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity () ;
glTranslatef(0.0, 0.0, -5.0)

WCS glPushMatrix()
glTranslate(4, 4, 0); W20

OCS1 glutSolidTeapot (1) ;
glPopMatrix () ;

glTranslate(2, 2, 0); W20
OCS2 9glutSolidTeapot(l);

ewing

W2V yeg V2C

projection
—”| transformation

200.0)

;| V2W

clipping
CCS

 transformations that
are applied to object
first are specified

last

Coordinate Systems: Frame vs Point

read down: transforming read up: transforming points,
between coordinate frames, up from frame B coords to
from frame A to frame B frame A coords
DCS display)
D2N N2D
NDCS normalized device
N2V V2N
VCS viewing
V2W w2V
WCS world
W20 Oo2W
v OCS object

Coordinate Systems: Frame vs Point

* Is gluLookAt V2W or W2V? depends on
which way you read!

 coordinate frames: V2W
* takes you from view to world coordinate frame

* points/objects: W2V
* transforms point from world to view coords

Homework

most of my lecture slides use coordinate frame
reading ("reading down")

* same with my post to discussion group: said to use
W2V, V2N, N2D

homework questions asked you to compute for
object/point coords ("reading up")

correct matrix for question 1 is gluLookat

enough confusion that we will not deduct marks if
you used inverse of gluLookAt instead of gluLookAt!

« same for Q2, Q3: no deduction if you used inverses
of correct matices 7

Review: Reflection Equations

l n
- Ilight (nel) i e‘

1 =KLy (V' r)nShiny

specular

_ f;\

l 4 lxlll.,,-q) ?
= 2(N(N-L)-L=R
............ A . 8

Review: Phong Lighting Model

« combine ambient, diffuse, specular components

#lights

Lo = KLampient + D L@ 1) + K (vor,) ™)
total a - ambient i d i S i
=1

- commonly called Phong lighting
* once per light
* once per color component

* reminder: normalize your vectors when calculating!

 normalize all vectors: n,l,r,v
9

Review: Blinn-Phong Model

» variation with better physical interpretation
* Jim Blinn, 1977

I (x)=k_(hem) ™] (x);withh=(1+v)/2

* h: halfway vector
* h must also be explicitly normalized: h / |h|
* highlight occurs when h near n

10

Review: Lighting

* lighting models
* ambient
* normals don’'t matter
» Lambert/diffuse
* angle between surface normal and light
* Phong/specular
* surface normal, light, and viewpoint

11

Review: Shading Models Summary

+ flat shading

» compute Phong lighting once for entire polygon
« Gouraud shading

- compute Phong lighting at the vertices

- at each pixel across polygon, interpolate lighting
values

* Phong shading
« compute averaged vertex normals at the vertices

- at each pixel across polygon, interpolate normals
and compute Phong lighting

12

Non-Photorealistic Shading

. cool-to-warm shading & -+

c=kc +U-k)c,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html ;3

Non-Photorealistic Shading

» draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector
* draw creases: if (n,-n,) = threshold

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 14

Computing Normals

» per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
« computing normal for a polygon

15

Computing Normals

» per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
« computing normal for a polygon
* three points form two vectors

16

Computing Normals

« per-vertex normals by interpolating per-facet normals
* OpenGL supports both

« computing normal for a polygon
* three points form two vectors

 cross: normal of plane
gives direction

- normalize to unit length!

* which side is up?
< convention: points in

counterclockwise
order

17

Specifying Normals

OpenGL state machine
 uses last normal specified
* if no normals specified, assumes all identical

per-vertex normals
glNormal3f(1,1,1);
glVertex3£(3.4,5);
gIlNormal3£(1,1,0);
glVertex3£(10,5,2);

per-face normals
glNormal3f(1,1,1);
glVertex3£(3.4,5);
glVertex3£(10,5,2);

normal interpreted as direction from vertex location

can automatically normalize (computational cost)
glEnable(GL NORMALIZE);

18

Advanced Rendering

19

Global lllumination Models

» simple lighting/shading methods simulate
local illumination models

* No object-object interaction
* global illumination models

* more realism, more computation

* leaving the pipeline for these two lectures!
* approaches

* ray tracing

* radiosity

» photon mapping

» subsurface scattering

20

Ray Tracing

» simple basic algorithm
 well-suited for software rendering

* flexible, easy to incorporate new effects
 Turner Whitted, 1990

21

Simple Ray Tracing >/

- view dependent method % O

* cast a ray from viewer’s
eye through each pixel

» compute intersection of
ray with first object in

scene
el bosit
- cast ray from - o projection
: : : projection I proj
Intersection point on reference plane

point

object to light sources

Reflection

mirror effects
 perfect specular reflection

Refraction

* happens at interface
between transparent object

and surrounding medium
* e.g. glass/air boundary

* Snell's Law
* ¢ sinf =c,sinob,
* light ray bends based on
refractive indices c,, C,

24

Recursive Ray Tracing >!-

_ 1IN
* ray tracing can handle
* reflection (chrome/mirror)
* refraction (glass)

* shadows

 spawn secondary rays

 reflection, refraction

« if another object is hit,
recurse to find its color y

* shadow projectio

- cast ray from intersection refertence
point to light source, check P°"
If intersects another object

~—\pixel positions
on projection
plane

>

25

Basic Algorithm

for every pixel p; {
generate ray r from camera position through pixel p;
for every object o in scene {
If (rintersects 0)

compute lighting at intersection point, using local
normal and material properties; store result in p;

else
p;= background color

26

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := Firstintersection(r,scene)
If (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));
else
reflect_color := Black;
iIf (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);

end;

27

Algorithm Termination Criteria

* termination criteria
* no Iintersection
* reach maximal depth
* number of bounces

» contribution of secondary ray attenuated
below threshold

* each reflection/refraction attenuates ray

28

Ray Tracing Algorithm

Light
Source
\\\llé
N

Image Plane

Shadow
Rays

Reflected
Ray

Refracted
Ray

29

Ray-Tracing Terminology

 terminology:

 primary ray: ray starting at camera
» shadow ray

» reflected/refracted ray

* ray tree: all rays directly or indirectly spawned
off by a single primary ray

* note:

* need to limit maximum depth of ray tree to
ensure termination of ray-tracing process!

30

Ray Trees

« all rays directly or indirectly spawned off by a single
primary ray

Ray traced through scene Ray tree

w.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting web/lighting.pdf 31

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
» lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

32

Ray Generation

» camera coordinate system
* origin: C (camera position)
* viewing direction: v u
* Up vector: u
» X direction: x=v x u
* note:

* corresponds to viewing
transformation in rendering pipeline

* like gluLookAt

33

Ray Generation

» other parameters:
- distance of camera from image plane: d | {———

e
ot
.
.t
(e
ot
X

* image resolution (in pixels): w, A

> left, right, top, bottom boundaries
In image plane: [, r, ¢, b

* then:

- lower left corner ofimage: O=C+d v+/[-X+b-u

 pixel at position i, j (i=0..w-1, j=0..h-1):
r—1 . t=b

° X —_] .—.u

w—1 h—1

=0+i-Ax-x-j-Ayy

BJ=O+ﬁ

34

Ray Generation

* ray in 3D space:
R, (@)=C+t-(F,-C)=C+tv,,

where = 0...

35

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
» lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

36

Ray - Object Intersections

iInner loop of ray-tracing
* must be extremely efficient

task: given an object o, find ray parameter ¢, such that R, (7)
IS a point on the object
 such a value for t may not exist

solve a set of equations

Intersection test depends on geometric primitive
* ray-sphere
* ray-triangle
* ray-polygon

37

Ray Intersections: Spheres

* spheres at origin
* implicit function

S, v,z): x> +y° +z> =77

* ray equation

R, (@)=C+tv,; =

+1-

(c_+1Vv)

cy+t°vy

\cz +t°v2/

38

Ray Intersections: Spheres

* to determine intersection:
* Insert ray R, (7) into S(x,y,z):

. 2 . 2 . 2 2
(c,+tv) +(c,+tv,) +(c.+tv) =r

» solve for ¢ (find roots)
* simple quadratic equation

39

Ray Intersections: Other Primitives

 implicit functions
» spheres at arbitrary positions
« same thing
* conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)
« same thing (all are quadratic functions!)
* polygons
- first intersect ray with plane
* linear implicit function
* then test whether point is inside or outside of polygon (2D test)
 for convex polygons

« suffices to test whether point in on the correct side of every
boundary edge

« similar to computation of outcodes in line clipping (upcoming)

40

Ray-Triangle Intersection

* method in book is elegant but a bit complex

* easier approach: triangle is just a polygon
* intersect ray with plane
normal:n=(b-a)x(c—a)

dI ray:x =e +rd
plane: (p—-x)'n=0= x=P 1
n
V b H=e+td=>t=—(e_p).n
n d'n

pisaorborc
* check if ray inside triangle

41

Ray-Triangle Intersection

 check if ray inside triangle

 check if point counterclockwise from each edge (to
its left)

 check if cross product points in same direction as
normal (i.e. if dot is positive)

C

(b-a)x(x-a)'n=0
(c-b)x(x-b)'n=0

@-¢)x(x-¢)'n=0

CCw

b

* more detalls at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf ”

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
» lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

43

Geometric Transformations

» similar goal as in rendering pipeline:

* modeling scenes more convenient using different
coordinate systems for individual objects

* problem

* not all object representations are easy to transform

* problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

* ray tracing has different solution
* ray itself is always affine invariant
* thus: transform ray into object coordinates!

44

Geometric Transformations

* ray transformation

» for intersection test, it is only important that ray is in
same coordinate system as object representation
* transform all rays into object coordinates

* transform camera point and ray direction by inverse of
model/view matrix

» shading has to be done in world coordinates (where
light sources are given)

» transform object space intersection point to world
coordinates

* thus have to keep both world and object-space ray

45

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
* lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

46

Local Lighting

* |local surface information (normal...)

» for implicit surfaces F(x,y,z)=0: normal n(x,y,z)
can be easily computed at every intersection
point using the gradient

n(x,y,z)=

(0F (x,v,z)/ 0x)
OF (x,y,z)/ dy
\OF(x,y,z)/az/

F(x,y,2)=x"+y +z> —r°

* example:

(2x)

n(x,y,z)=|2y

|22

needs to be normalized!

47

Local Lighting

* local surface information

- alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline

* now easy to use Phong shading!
as discussed for rendering pipeline

- difference with rendering pipeline:
* interpolation cannot be done incrementally

* have to compute barycentric coordinates for
every intersection point (e.g plane equation for
triangles)

48

Global Shadows

* approach

* to test whether point is in shadow, send out
shadow rays to all light sources

* if ray hits another object, the point lies in
shadow

<<

49

Global Reflections/Refractions

* approach

* send rays out in reflected and refracted direction to
gather incoming light

* that light is multiplied by local surface color and
added to result of local shading

<

50

Total Internal Reflection
As the angle of incidence increases from 0 to greater angles ...

...the refracted ray becomes dimmer (there is less refraction)

...the reflected ray becomes brighter (there is more reflection)

...the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.

http://www.physicsclassroom.com/Class/refrn/U14L3b.html

51

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
» lighting and shading

o efficient data structures so we don’t have to
test intersection with every object

52

Optimized Ray-Tracing

basic algorithm simple but very expensive
optimize by reducing:

* number of rays traced

* number of ray-object intersection calculations
methods

» bounding volumes: boxes, spheres

- spatial subdivision

e uniform
« BSP trees

(more on this later with collision)

Example Images

Radiosity

* radiosity definition
- rate at which energy emitted or reflected by a surface
 radiosity methods

« capture diffuse-diffuse bouncing of light
* indirect effects difficult to handle with raytracing

Radiosity

 illumination as radiative heat transfer

energy thermometer/eye
packets

reflective objects

» conserve light energy in a volume
* model light transport as packet flow until convergence
* solution captures diffuse-diffuse bouncing of light

* view-independent technique
* calculate solution for entire scene offline
* browse from any viewpoint in realtime

56

Radiosity

 divide surfaces into small patches

* loop: check for light exchange between all pairs
 form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/Globallllumination/Image/discrete.jpg €science.anu.edu.au/lecture/cg/Globallllumination/Image/continuous.jpg

57

Better Global lllumination

 ray-tracing: great specular, approx. diffuse
* view dependent

- radiosity: great diffuse, specular ignored
 view independent, mostly-enclosed volumes

« photon mapping: superset of raytracing and radiosity
 view dependent, handles both diffuse and specular well

raytracing photon mapping

graphics.ucsd.edu/~k/images/cbox.html

58

Subsurface Scattering: Translucency

* light enters and leaves at different locations
on the surface

* bounces around inside
* technical Academy Award, 2003
« Jensen, Marschner, Hanrahan

D QM
“FWN

e Wy

CA

-

59

Subsurface Scattering: Marble

60

Subsurface Scattering: Milk vs. Paint

61

Subsurface Scattering: Skin

RENDERED EY HENF WANN JER

Subsurface

Scattering: Skin

RENDERED EY HENFR WANN JENSEN

63

Non-Photorealistic Rendering

* simulate look of hand-drawn sketches or
paintings, using digital models

s T A O R e :—:.1 A f-'-., X
o s e TR < B
» &:‘;‘w AR N : e
v e A e e A :
N & P il

www.red3d.com/cwr/npr/

64

