
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Lighting/Shading II

Week 7, Mon Mar 1

2

News
• Homework 3 out today
• Homework 2, Project 2 due tomorrow
• TA office hours in lab

• (Mon 2-3 lab, Shailen)
• Mon 3-5, Garrett
• Tue 11-1, Shailen
• (Tue 1-2 lab, Kai)
• Tue 3:50-5, Kai

• (my office hours in X661 Mon 4-5)
• intended for CS111, but will answer 314 questions if

there are no 111 students waiting
• department news

3

Department of Computer Science Undergraduate Events
Events this week
Resume & Cover Letter Drop-In Session
Date: Wed., Mar 3
Time: 12 – 3 pm (20 mins.

sessions)
Location: Rm 255, ICICS/CS

Find a Job Fast! Info Session
Date: Thurs., Mar 4
Time: 12:30 – 1:45 pm
Location: DMP 201
Registration: Email dianejoh@cs.ubc.ca

Townhall Meting – 1st Year CS Students
Date: Thurs., Mar 4
Time: 12:30 - 2 pm
Location: DMP 310
Lunch will be provided!

Faculty Talk – Son Vuong
Title: Mobile Learning via LIVES
Date: Thurs., Mar 4
Time: 12:30 – 1:45 pm
Location: DMP 201

Events next week
Townhall Meeting – Combined

Majors/Honours, BA, B.Comm in CS
Date: Thurs., Mar 11
Time: 12:30 – 2 pm
Location: DMP 310
Lunch will be provided!

CS Distinguished Lecture Series –
Featuring David Parkes
Title: Incentive Mechanism

Engineering in the Internet Age
Date: Thurs., Mar 11
Time: 3:30 – 4:50 pm
Location: DMP 110

CSSS Moive Night –
“Zombieland” & “Iron Man”
Date: Thurs., Mar 11
Time: 6 – 10 pm
Location: DMP 310
Free pop & popcorn!

4

Review: Computing Barycentric
Coordinates

• 2D triangle area
• half of parallelogram area

• from cross product

A = ΑP1 +ΑP2 +ΑP3

α = ΑP1 /A

β = ΑP2 /A

γ = ΑP3 /A

3
P
A

1
P

3
P

2
P

P

((α,β,γα,β,γ) =) =
(1,0,0)(1,0,0)

((α,β,γα,β,γ) =) =
(0,1,0)(0,1,0)

((α,β,γα,β,γ) =) =
(0,0,1)(0,0,1) 2

P
A

1
P
A

weighted combination of three points

5

Review: Light Sources
• directional/parallel lights

• point at infinity: (x,y,z,0)T

• point lights
• finite position: (x,y,z,1)T

• spotlights
• position, direction, angle

• ambient lights

6

Review: Light Source Placement

• geometry: positions and directions
• standard: world coordinate system

• effect: lights fixed wrt world geometry
• alternative: camera coordinate system

• effect: lights attached to camera (car headlights)

7

Review: Reflectance

• specular: perfect mirror with no scattering
• gloss: mixed, partial specularity
• diffuse: all directions with equal energy

 + + =

 specular + glossy + diffuse =
 reflectance distribution

8

Review: Reflection Equations

 Idiffuse = kd Ilight (n • l)
nl

θ

9

diffuse diffuse

plus

specular

Specular Reflection
• shiny surfaces exhibit specular reflection

• polished metal
• glossy car finish

• specular highlight
• bright spot from light shining on a specular surface

• view dependent
• highlight position is function of the viewer’s position

10

Specular Highlights

Michiel van de Panne

11

Physics of Specular Reflection

• at the microscopic level a specular reflecting
surface is very smooth

• thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

• the smoother the surface, the closer it
becomes to a perfect mirror

12

Optics of Reflection

• reflection follows Snell’s Law:
• incoming ray and reflected ray lie in a plane

with the surface normal
• angle the reflected ray forms with surface

normal equals angle formed by incoming ray
and surface normal

θ(l)ight = θ(r)eflection

13

Non-Ideal Specular Reflectance
• Snell’s law applies to perfect mirror-like surfaces,

but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

• how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

• one option: model the microgeometry of the
surface and explicitly bounce rays off of it

• or…

14

Empirical Approximation

• we expect most reflected light to travel in
direction predicted by Snell’s Law

• but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

• as angle from ideal reflected ray increases,
we expect less light to be reflected

15

Empirical Approximation
• angular falloff

• how might we model this falloff?

16

• nshiny : purely empirical
constant, varies rate of falloff
• ks: specular coefficient,
highlight color
• no physical basis, works
ok in practice

v

!

Ispecular = ksIlight (cos")
n
shiny

Phong Lighting

• most common lighting model in computer
graphics

• (Phong Bui-Tuong, 1975)

17

Phong Lighting: The nshiny Term

• Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

• what does this term control, visually?

Viewing angle – reflected angle

18

Phong Examples

varying l

varying nshiny

19

Calculating Phong Lighting

• compute cosine term of Phong lighting with vectors

• v: unit vector towards viewer/eye
• r: ideal reflectance direction (unit vector)
• ks: specular component

• highlight color
• Ilight: incoming light intensity

• how to efficiently calculate r ?

v

!

Ispecular = ksIlight (v•r)
n
shiny

20

Calculating R Vector
P = N cos θ = projection of L onto N

L
P

N

θ

21

Calculating R Vector
P = N cos θ = projection of L onto N
P = N (N · L)

L
P

N

θ

22

Calculating R Vector
P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

L
P

N

θ

23

Calculating R Vector
P = N cos θ |L| |N| projection of L onto N
P = N cos θ L, N are unit length
P = N (N · L)

2 P = R + L
2 P – L = R
2 (N (N · L)) - L = R L

P

P

R

L

N

θ

24

Phong Lighting Model

• combine ambient, diffuse, specular components

• commonly called Phong lighting
• once per light
• once per color component

• reminder: normalize your vectors when calculating!
• normalize all vectors: n,l,r,v

!

I
total

= k
a
I
ambient

+ I
i
(

i=1

lights

" k
d
(n• l

i
) + k

s
(v•r

i
)
n
shiny
)

25

Phong Lighting: Intensity Plots

26

Blinn-Phong Model

• variation with better physical interpretation
• Jim Blinn, 1977

• h: halfway vector
• h must also be explicitly normalized: h / |h|
• highlight occurs when h near n

ll

nn
vvhh

!

Iout (x) = k
s
(h•n)

n
shiny • Iin (x);with h = (l + v) /2

27

Light Source Falloff

• quadratic falloff
• brightness of objects depends on power per

unit area that hits the object
• the power per unit area for a point or spot light

decreases quadratically with distance
Area Area 44ππrr22

Area Area 44ππ(2(2r)r)22

28

Light Source Falloff

• non-quadratic falloff
• many systems allow for other falloffs
• allows for faking effect of area light sources
• OpenGL / graphics hardware

• Io: intensity of light source
• x: object point
• r: distance of light from x

29

Lighting Review

• lighting models
• ambient

• normals don’t matter
• Lambert/diffuse

• angle between surface normal and light
• Phong/specular

• surface normal, light, and viewpoint

30

Lighting in OpenGL
• light source: amount of RGB light emitted

• value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

• every light source emits ambient, diffuse, and specular
light

• materials: amount of RGB light reflected
• value represents percentage reflected

e.g., (0.0,1.0,0.5)
• interaction: multiply components

• red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

31

Lighting in OpenGL
glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba);
glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba);
glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

• warning: glMaterial is expensive and tricky
• use cheap and simple glColor when possible
• see OpenGL Pitfall #14 from Kilgard’s list
http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

32

Shading

33

Lighting vs. Shading

• lighting
• process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point,
usually on a surface

• shading
• the process of assigning colors to pixels

• (why the distinction?)

34

Applying Illumination

• we now have an illumination model for a point
on a surface

• if surface defined as mesh of polygonal facets,
which points should we use?
• fairly expensive calculation
• several possible answers, each with different

implications for visual quality of result

35

Applying Illumination

• polygonal/triangular models
• each facet has a constant surface normal
• if light is directional, diffuse reflectance is

constant across the facet
• why?

36

Flat Shading

• simplest approach calculates illumination at a
single point for each polygon

• obviously inaccurate for smooth surfaces

37

Flat Shading Approximations
• if an object really is faceted, is this

accurate?
• no!

• for point sources, the direction to light
varies across the facet

• for specular reflectance, direction to
eye varies across the facet

38

Improving Flat Shading
• what if evaluate Phong lighting model at each pixel

of the polygon?
• better, but result still clearly faceted

• for smoother-looking surfaces
we introduce vertex normals at each
vertex
• usually different from facet normal
• used only for shading
• think of as a better approximation of the real surface

that the polygons approximate

39

Vertex Normals

• vertex normals may be
• provided with the model
• computed from first principles
• approximated by

averaging the normals
of the facets that
share the vertex

40

Gouraud Shading

• most common approach, and what OpenGL does
• perform Phong lighting at the vertices
• linearly interpolate the resulting colors over faces

• along edges
• along scanlines

C1

C2

C3

edge: mix of c1, c2

edge: mix of c1, c3
interior: mix of c1, c2, c3

does this eliminate the facets?

41

Gouraud Shading Artifacts

• often appears dull, chalky
• lacks accurate specular component

• if included, will be averaged over entire
polygon

C1

C2

C3

this interior shading missed!

C1

C2

C3

this vertex shading spread
over too much area

42

Gouraud Shading Artifacts

• Mach bands
• eye enhances discontinuity in first derivative
• very disturbing, especially for highlights

43

Gouraud Shading Artifacts

C1

C2

C3

C4

Discontinuity in rate
of color change

occurs here

• Mach bands

44

Gouraud Shading Artifacts

• perspective transformations
• affine combinations only invariant under affine,

not under perspective transformations
• thus, perspective projection alters the linear

interpolation!

Z – into the scene

Image
plane

45

Gouraud Shading Artifacts
• perspective transformation problem
• colors slightly “swim” on the surface as objects move

relative to the camera
• usually ignored since often only small difference

• usually smaller than changes from lighting variations
• to do it right

• either shading in object space
• or correction for perspective foreshortening
• expensive – thus hardly ever done for colors

46

Phong Shading

• linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
• same input as Gouraud shading
• pro: much smoother results
• con: considerably more expensive

• not the same as Phong lighting
• common confusion
• Phong lighting: empirical model to calculate illumination at

a point on a surface

47

Phong Shading

• linearly interpolate the vertex normals
• compute lighting equations at each pixel
• can use specular component

N1

N2

N3

N4

!

Itotal = kaIambient + Ii kd n " li() + ks v " ri()
nshiny()

i=1

lights

#
remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

48

Phong Shading Difficulties

• computationally expensive
• per-pixel vector normalization and lighting

computation!
• floating point operations required

• lighting after perspective projection
• messes up the angles between vectors
• have to keep eye-space vectors around

• no direct support in pipeline hardware
• but can be simulated with texture mapping
• stay tuned for modern hardware: shaders

49

Gouraud Phong

Shading Artifacts: Silhouettes

• polygonal silhouettes remain

50

A

D

C

B

Interpolate between
AB and AD

ι

B

A

D

C

Interpolate between
CD and AD

Rotate -90o

and color
same point

Shading Artifacts: Orientation
• interpolation dependent on polygon orientation

• view dependence!

51

B

A

C

vertex B shared by two rectangles
on the right, but not by the one on
the left

E

D

F

H

G
first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

Shading Artifacts: Shared Vertices

52

Shading Models Summary
• flat shading

• compute Phong lighting once for entire
polygon

• Gouraud shading
• compute Phong lighting at the vertices and

interpolate lighting values across polygon
• Phong shading

• compute averaged vertex normals
• interpolate normals across polygon and

perform Phong lighting across polygon

53

Shutterbug: Flat Shading

54

Shutterbug: Gouraud Shading

55

Shutterbug: Phong Shading

56

Non-Photorealistic Shading
• cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

k
w

=
1+ n " l

2
,c = k

w
c
w

+ (1# k
w
)c

c

57

Non-Photorealistic Shading
• draw silhouettes: if , e=edge-eye vector
• draw creases: if

!

(e "n0)(e "n1) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

(n
0
"n

1
) # threshold

58

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon

c

b

a

59

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors

c

b

a

c-b
a-b

60

Computing Normals
• per-vertex normals by interpolating per-facet normals

• OpenGL supports both
• computing normal for a polygon

• three points form two vectors
• cross: normal of plane

gives direction
• normalize to unit length!

• which side is up?
• convention: points in

counterclockwise
order

c

b

a

c-b
a-b

(a-b) x (c-b)

61

Specifying Normals
• OpenGL state machine

• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

