University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Lighting/Shading i

Week 7, Mon Mar 1

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

Homework 3 out today
Homework 2, Project 2 due tomorrow

TA office hours in lab

* (Mon 2-3 lab, Shailen)

* Mon 3-5, Garrett

 Tue 11-1, Shailen

* (Tue 1-2 lab, Kai)

* Tue 3:50-5, Kai

(my office hours in X661 Mon 4-5)

* intended for CS111, but will answer 314 questions if
there are no 111 students waiting

department news

Department of Computer Science Undergraduate Events

Resume & Cover Letter Drop-In Session Townhall Meeting — Combined

Date: Wed., Mar 3 Majors/Honours, BA, B.Comm in CS
Time: 12 — 3 pm (20 mins. Date: Thurs., Mar 11
sessions) Time: 12:30 - 2 pm
Location: Rm 255, ICICS/CS Location: DMP 310
Find a Job Fast! Info Session Lunch will be provided!
Date: Thurs., Mar 4 CS Distinguished Lecture Series —
Time: 12:30 — 1:45 pm Featuring David Parkes
Location: DMP 201 Title: Incentive Mechanism
Registration: Email dianejoh@cs.ubc.ca Engineering in the Internet Age
_ Date: Thurs., Mar 11
Townhall Meting — 15t Year CS Students t6. 3:30 — 4:50 pm
Date: Thurs., Mar 4 Location: DMP 110
Time: 12:30 - 2 pm
Location: DMP 310 CSSS Moive Night —
Lunch will be provided! “Zombieland” & “Iron Man”
Date: Thurs., Mar 11
F.aculty Talk — Son. Vuong _ _ Time: 6 —10 pm
Title: Mobile Learning via LIVES Location: DMP 310
D.a\te: Thurs., Mar 4 Free pop & popcorn!
Time: 12:30 — 1:45 pm

Location: DMP 201 3

Review: Computing Barycentric

| Coordinates
« 2D triangle area (o,B,y) =

» half of parallelogram area £ (1,0,0)
» from cross product

A = AP1 +AP2 +AP3 (a9ﬁaY) =
(050!1)
P,
P =
b =Ap /A ’ (?6ﬁiyt)))
Y = Apz/A

weighted combination of three points

Review: Light Sources
» directional/parallel lights
* point at infinity: (x,y,z,0)" 4%

+ point lights ﬂ&
» finite position: (x,y,z,1)7

v 44
* spotlights N
* position, direction, angle AR

- ambient lights Bié

Review: Light Source Placement

» geometry: positions and directions
» standard: world coordinate system
+ effect: lights fixed wrt world geometry

» alternative: camera coordinate system
- effect: lights attached to camera (car headlights)

Review: Reflectance

* specular. perfect mirror with no scattering
» gloss: mixed, partial specularity
* diffuse: all directions with equal energy

VARV I v

specular + glossy + diffuse =
reflectance distribution

Review: Reflection Equations

/ n
Lyittuse = Kd Liighe (M * D) . : 6‘

Specular Reflection

« shiny surfaces exhibit specular reflection
* polished metal

 glossy car finish

diffuse diffuse

plus

« specular highlight specular
* bright spot from light shining on a specular surface
e view dependent

* highlight position is function of the viewer's position

Specular Highlights

Michiel van de Panne

10

Physics of Specular Reflection
* at the microscopic level a specular reflecting
surface is very smooth

* thus rays of light are likely to bounce off the
microgeometry in a mirror-like fashion

* the smoother the surface, the closer it
becomes to a perfect mirror

11

Optics of Reflection

* reflection follows Snell’s Law:

* incoming ray and reflected ray lie in a plane
with the surface normal

 angle the reflected ray forms with surface
normal equals angle formed by incoming ray
and surface normal

7]
A

% e(l)ight - e(r)eﬂection

]

12

Non-ldeal Specular Reflectance

Snell's law applies to perfect mirror-like surfaces,
but aside from mirrors (and chrome) few surfaces
exhibit perfect specularity

how can we capture the “softer” reflections of
surface that are glossy, not mirror-like?

one option: model the microgeometry of the
surface and explicitly bounce rays off of it

or...

Empirical Approximation

» we expect most reflected light to travel in
direction predicted by Snell's Law

* but because of microscopic surface
variations, some light may be reflected in a
direction slightly off the ideal reflected ray

* as angle from ideal reflected ray increases,
we expect less light to be reflected

14

Empirical Approximation

angular falloff
7]
4

o

!

v

how might we model this falloff?

15

Phong Lighting

* most common lighting model in computer
graphics
 (Phong Bui-Tuong, 1975)

n,.
Ispecular = ksIlight (COS ¢) o

R
-

* Ny - PUrely empirical l_ I
constant, varies rate of falloff fd F
* kg: specular coefficient, ﬂ;l \
highlight color

-

* no physical basis, works

ok in practice
16

Phong Lighting: The n Term

shiny

« Phong reflectance term drops off with divergence of viewing angle from
ideal reflected ray

Viewing angle — reflected angle
17

Phong Examples

varying |

varying n

shiny

18

Calculating Phong Lighting

» compute cosine term of Phong lighting with vectors

* highlight color
ight: INcoming light intensity

n.,.
_ shiny
Ispecular — ksIlight (V ° l')
* V: unit vector towards viewer/eye _ ‘5:\\\
. o : _ 1oy
» r:ideal reflectance direction (unit vector) ; y
» kg: specular component ol %

* how to efficiently calculate r ?

19

Calculating R Vector

P = N cos 0 = projection of L onto N

20

Calculating R Vector

P = N cos 0 = projection of L onto N
P=N(N-L)

21

Calculating R Vector

P=Ncos0|L||N|
P=Ncos6
P=N(N-L)

projection of L onto N
L, N are unit length

22

Calculating R Vector

P=NcosO|L||[N| projectionofLontoN
P=Ncos6 L, N are unit length

P=N(N-L)

2P=R+L
2P-L=R
2(N(N-L))-L=R

23

Phong Lighting Model

« combine ambient, diffuse, specular components

#lights

Itotal = kaIambient + 211 (kd (n ¢ ll) + ks(v * ri)nShiny)
i=1

- commonly called Phong lighting
* once per light
* once per color component

* reminder: normalize your vectors when calculating!

 normalize all vectors: n,l,r,v
24

Phong Lighting: Intensity Plots

Phong

pambienl

p(liﬁuw

¢,= 60°

¢,= 25

6= 0"

25

Blinn-Phong Model

* variation with better physical interpretation
« Jim Blinn, 1977

(x) =k_(h*n) " shiny o[(x);withh=(1+v)/2

OI/lt

 h: halfway vector
* h must also be explicitly normalized: h / |n|
* highlight occurs when h near n

26

Light Source Falloff

 quadratic falloff

* brightness of objects depends on power per
unit area that hits the object

 the power per unit area for a point or spot light
decreases quadratically with distance

Area 4nr?

e
.
.
o
.
.
o
.
.
o
.
o
o

‘e
‘e
.

27

Light Source Falloff

* non-quadratic falloff
* many systems allow for other falloffs
» allows for faking effect of area light sources

* OpenGL / graphics hardware
- 1.: intensity of light source
* x. Object point
» 1. distance of light from x

1

ar’ +br + ¢

]in(x)= .IO

28

Lighting Review

* lighting models
* ambient
* normals don’t matter
» Lambert/diffuse
» angle between surface normal and light
* Phong/specular
* surface normal, light, and viewpoint

29

Lighting in OpenGL

* light source: amount of RGB light emitted

* value represents percentage of full intensity
e.g., (1.0,0.5,0.5)

* every light source emits ambient, diffuse, and specular
light

« materials: amount of RGB light reflected

* value represents percentage reflected
e.g., (0.0,1.0,0.5)

* Interaction: multiply components
* red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

30

Lighting in OpenGL

glLightfv(GL LIGHTO, GL_ AMBIENT, amb_light rgba);
glLightfv(GL _LIGHTO, GL_DIFFUSE, dif light rgba);
glLightfv(GL LIGHTO, GL SPECULAR, spec_light rgba);
glLightfv(GL LIGHTO, GL_POSITION, position);
glEnable(GL LIGHTO);

glMaterialfv(GL_FRONT, GL AMBIENT, ambient rgba);
glMaterialfv(GL_FRONT, GL DIFFUSE, diffuse rgba);
glMaterialfv(GL_FRONT, GL SPECULAR, specular rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

- warning: glMaterial is expensive and tricky

 use cheap and simple glColor when possible
+ see OpenGL Pitfall #14 from Kilgard's list

http://www.opengl.org/resources/features/KilgardTechniques/oglpitfall/

31

Shading

32

Lighting vs. Shading

* lighting
» process of computing the luminous intensity
(i.e., outgoing light) at a particular 3-D point,
usually on a surface
- shading
* the process of assigning colors to pixels
N

* (why the distinction?) /
O

33

Applying lllumination

* we now have an illumination model for a point
on a surface

* if surface defined as mesh of polygonal facets,
which points should we use?

» fairly expensive calculation

 several possible answers, each with different
implications for visual quality of result

34

Applying lllumination

 polygonal/triangular models
« each facet has a constant surface normal

* if light is directional, diffuse reflectance is
constant across the facet

* why?

35

Flat Shading

* simplest approach calculates illumination at a
single point for each polygon

 obviously inaccurate for smooth surfaces

36

Flat Shading Approximations

 if an object really is faceted, is this
accurate?

* nol!

« for point sources, the direction to light
varies across the facet

‘—
 for specular reflectance, direction to . >
eye varies across the facet
e

37

Improving Flat Shading

- what if evaluate Phong lighting model at each pixel
of the polygon?

* better, but result still clearly faceted

 for smoother-looking surfaces
we introduce vertex normals at each
vertex

* usually different from facet normal
* used only for shading

* think of as a better approximation of the real surface
that the polygons approximate

38

Vertex Normals

 vertex normals may be
 provided with the model
» computed from first principles

* approximated by
averaging the normals
of the facets that
share the vertex

39

Gouraud Shading

* most common approach, and what OpenGL does
- perform Phong lighting at the vertices
* linearly interpolate the resulting colors over faces
- along edges
 along scanlines

edge: mixofc,, ¢, C,

does this eliminate the facets? .2 S8 ... >

o C, |
interior: mix of ¢1, ¢2, ¢3

edge: mix of ¢1, ¢3
40

Gouraud Shading Artifacts

 often appears dull, chalky

* |lacks accurate specular component

* if included, will be averaged over entire
polygon

Cc, thisvertex shading spread
this interior shading missed! over too much area 4

Gouraud Shading Artifacts

* Mach bands
» eye enhances discontinuity in first derivative
» very disturbing, especially for highlights

42

Gouraud Shading Artifacts
* Mach bands

Discontinuity in rate
of color change
occurs here

43

Gouraud Shading Artifacts

* perspective transformations

» affine combinations only invariant under affine,
not under perspective transformations

 thus, perspective projection alters the linear
interpolation!

—
S

Gouraud Shading Artifacts

 perspective transformation problem

* colors slightly “swim” on the surface as objects move
relative to the camera

 usually ignored since often only small difference

* usually smaller than changes from lighting variations
* to do it right

* either shading in object space

* or correction for perspective foreshortening

« expensive — thus hardly ever done for colors

45

Phong Shading

* linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
- same input as Gouraud shading
e pro: much smoother results
* con: considerably more expensive

* not the same as Phong lighting
¢ common confusion

« Phong lighting: empirical model to calculate illum® |
a point on a surface

46

Phong Shading

* linearly interpolate the vertex normals
- compute lighting equations at each pixel
* can use specular component

#lights
Immz = kalambiem + E Ii(kd (n- li) + ks(v- ri)nshmy)
N, i=1

remember: normals used In
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

47

Phong Shading Difficulties

computationally expensive

» per-pixel vector normalization and lighting
computation!

» floating point operations required

lighting after perspective projection

* messes up the angles between vectors

* have to keep eye-space vectors around
no direct support in pipeline hardware

* but can be simulated with texture mapping
» stay tuned for modern hardware: shaders

48

Shading Artifacts: Silhouettes

» polygonal silhouettes remain

Gouraud Phong

49

Shading Artifacts: Orientation

* Interpolation dependent on polygon orientation
* view dependence!

Rotate -90°
and color
same point
— -

Interpolate between Interpolate between
AB and AD CD and AD

Shading Artifacts: Shared Vertices

D C-I_|
I.Gl
E A F

vertex B shared by two rectangles
on the right, but not by the one on
the left

first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

51

Shading Models Summary

» flat shading

» compute Phong lighting once for entire
polygon
» Gouraud shading

- compute Phong lighting at the vertices and
interpolate lighting values across polygon

* Phong shading
» compute averaged vertex normals

* interpolate normals across polygon and
perform Phong lighting across polygon

52

Shutterbug: Flat Shading

53

Shutterbug: Gouraud Shading

54

Shutterbug: Phong Shading

55

Non-Photorealistic Shading

l+n-1

* cool-to-warm shading k= c=kc +(1-k)c,

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html ¢

Non-Photorealistic Shading

* draw silhouettes: if (e-ny)(e-n,) <0, e=edge-eye vector
« draw creases: if (n,-n,) < rhreshold

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 57

Computing Normals

« per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
» computing normal for a polygon

58

Computing Normals

« per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
» computing normal for a polygon
* three points form two vectors

59

Computing Normals

« per-vertex normals by interpolating per-facet normals
* OpenGL supports both

« computing normal for a polygon

* three points form two vectors

 cross: normal of plane
gives direction

- normalize to unit length!

* which side is up?
< convention: points in

counterclockwise
order

60

Specifying Normals

* OpenGL state machine
* uses last normal specified

* if no normals specified, assumes all identical

e per-vertex normals
glNormal3f(1,1,1);
glVertex31(3.4,5);
glNormal3£(1,1,0);
glVertex31(10,5,2);

* per-face normals
gINormal31(1,1,1);

glVertex31(3,4,5);
glVertex31(10,5,2);

61

