University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Lighting/Shading |

Week 6, Fri Feb 12

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Correction: W2V vs. V2W
Islide 38 week3.day3 (Fri Jan 22) |

'1 0 0 e T -I/lx vV, W, 0

. M _TR 01 0 e;c R - u, v, w, 0
wav— o o 1 e. u, v, w, 0
000 I 00 0 1

* we derived position of camera in world
* invert for world with respect to camera

* Myow=(Myyoy) -R1T-

U, u, U offt 0 0 -e]| [u, u, u, |-eeu
v, v, v, 00 1 0 -e v, Vv, v, |-e°evV
M . = o Y N Y — X y Z
view2world |y w, w, 00 0 1T - | [w, w, w, |-€°W
0 0 O If0 0 0 1 0 0 O 1

Correction: W2V vs. V2W

* Myow=(Myyoy) -R1T-

M

V2W

view2world ~

u, U,
Ve v,
we W,
0 O

U, U,
Ve v,
w.oow,

0 0

uZ
VZ
WZ
0

u
v,

<
WZ

0

—_ o o o

u

1 0 0 1 [u, u, u,
0 1 0 -e oy
00 1 —e| |w, w, w,
oo0o0 1] (0 0 O

—e KU, +—e FU +—e FU

—ex*Vx+—€y*Vy +—e *V,

—e, EW, +—e EW +—e EW,

1

—e°u
—€°V

—-€C°wW

Correction: Perspective Derivation

lslide 30 week4.day3 (Fri Jan 29) | | z axis flip! |

x'T [E 0 A O0lx X'= Ex + Az x=left = x'/w'k-1

y'| |0 F B 0y y'= Fy + B x =right = x'/wi=1_|

4 B 0O 0 C D|z /=Cz+D y=top —= y/w'=1

w'l |0 0 -1 0f1 Ww'=—z y = bottom — y'/w' = -1
z=-near — 7 /w'=1
z=—far —= 7' /w' =-1

y'= Fy + Bz, y"=Fy+'Bz, 1=Fy+'Bz, 1=Fy+BZ,
W W W _7

1=F2+B%, 1-FL_B 1-F— 2 _p
—Z —Z —Z —(—near)

1= _p
near

News

P2 due date extended to Tue Mar 2 5pm

 VV2W correction affects Q1 and thus cascades
to Q4-Q7

» perspective correction affects Q8

* TA office hours in lab for P2/H2 questions Fri
2-4 (Garrett)

M
L
)

—o— PPT Fix: Basic Line Drawing

TAA)
A\

%

N4
D
A%

)

m/r\ Line (x,, y,, X;, ¥;)
begin
float dx, dy, x, y, slope ;
y=mx+b dx < x, - x,;
y=((?_§:0))(x—x0)+yo v dyyo,
1 0 slope <= /dx;
« goals y<=y,
* Integer coordinates for x from x,, to x, do
* thinnest line with no gaps begin
assume PlotPixel (x, Round (y)) ;

d
* X, < X,,slope 0< y/ <1
0= 5P dx y <y + slope ;
one octant, other cases symmetric end ;

: 1o
how can we do this more quickly end :

Clarification/Correction IlI: Midpoint

* we're moving horizontally along x direction (first octant)

* only two choices: draw at current y value, or move up vertically to
y+17?

» check if midpoint between two possible pixel centers above or below line
- candidates

* top pixel: (x+1,y+1)

- bottom pixel: (x+1, y) below: top pixel
* midpoint: (x+1, y+.5)

* check if midpoint above or below line

* below: pick top pixel

* above: pick bottom pixel

» other octants: different tests
- octant ll: y loop, check x left/right| above: bottom pixel

Review: Triangulating Polygons

* simple convex polygons
* trivial to break into triangles

« pick one vertex, draw lines to all others not
Immediately adjacent

* OpenGL supports automatically
+ gIBegin(GL_POLYGON) ... glEnd()

e concave or non-simple polygons
- more effort to break into triangles
* simple approach may not work

* OpenGL can support at extra cost

* gluNewTess(), gluTessCallback(), ...

Review: Flood Fill

* simple algorithm
 draw edges of polygon
* use flood-fill to draw interior

. ST
I/ ’ \\I P//// é SN
A | «=[0|0[O]=

PPT Fix: Flood Filli

» draw edges
° run:

FloodFill(Polygon P, int x, int y, Color C)
if not (OnBoundary(x,y,P) or Colored(x,y,C))
begin

PlotPixel(x,y,C);

FloodFill(P,x + 1,y,C);

FloodFill(P,x,y + 1,C);

FloodFill(P,x,y -1,C);

FloodFill(P,x -1,y,C);

end ;

e drawbacks?

10

Review: Scanline Algorithms

* scanline: a line of pixels in an image

- set pixels inside polygon boundary along
horizontal lines one pixel apart vertically
* parity test: draw pixel if edgecount is odd

* optimization: only loop over axis-aligned
bounding box of xmin/xmax, ymin/ymax

Review: Bilinear Interpolation

* Interpolate quantity along L and R edges,
as a function of y

* then interpolate quantity as a function of x

12

Review: Barycentric Coordinates

* non-orthogonal coordinate system based on
triangle itself

- origin: P,, basis vectors: (P,-P,) and (P,-P,)

=()
! (o,B,y) =

P =P, + B(Py-Py)+y(P;-P,) P
1| (1,0,0)

P=(1-p-v)P, + P, +yP; y=1
P = AP, + BP,+P;

o=0

(a,B,y) =
(0,0,1)

o+ P+y="1

O<=a,p,y<=1 p=0 - /‘ (oB57) =
P | (0,1,0)

13

Using Barycentric Coordinates

(a,B,y) =

- weighted combination of vertices s £1 (1,00

* smooth mixing (aByy) =
* speedup (0,0,1) =0.5
« compute once per triangle |

p=1
P=oa-B+pP +y B P, (o) =
oa+p+y=1 (0,1,0)
O<a,p,y <1 for points inside triangle

“convex combination of points”

* demo
http://www.cut-the-knot.org/Curriculum/Geometry/Barycentric.shtml 14

Computing Barycentric Coordinates

« 2D triangle area (o.B,y) =

+ half of parallelogram area £ (1,0,0)
» from cross product

(oBsy) =
(0,0,1)
_ P
A= Apy *Apy +Ap; :
o = Apq /A E (a.Byy) =
0,1,0
P =Apz/A o0

Y = Apz/A

15

Deriving Barycentric From Bilinear

 from bilinear interpolation of point P on
scanline

d
P =P + L _(P-P
=R (B =R
— (- R G p -
d, +d, d, +d,
d2 })2+ dl })3

=a’1+a’2 d +d,

Deriving Barycentric From Bilineaer

* similarly

P=P+— (P-P
x =D h+@(l)

-
b, +b, b, +b,

— b2 })2+ bl
b, +b, b, +b,

= (1-

l§

17

Deriving Barycentric From Bilinear

» combining

p-_% d,
d +d,

¢, +cC,

P,+ ——P,

¢, ¢

P= P, + P,

¢, +cC, ¢, +cC,

d d
P =———h+-——Fh

d +d, d +d,

b b
Py=2P+ P

b, +b, b, +b,
d LG b, P+ b,
+d, c,+c,\b +b, b, + b,

B

18

Deriving Barycentric From Bilinear

e thus P = aP, + P, + yP, with
¢y b

a:
c,+c, b +0b,

B = C, d, + ¢, b,
c,+c,d +d, c +c,b +b,
C d

_ 2 1

’)/_

c,+c,d +d,

- can verify barycentric properties

a+p+y=1, O<a,B,y <1

19

Lighting |

20

Rendering Pipeline
Model/View
Transform.||

Scan : Depth _ Frame-
|Conversion| '! dednilie I" Test Blending buffer

Perspectiv
Transform.

Geometry
Database

Lighting

Clipping

21

Projective Rendering Pipeline

object world viewing
ocs 92W \ wes/ W2V _ves J V2C
o modeling . viewing . prOJectlor_n
transformation transformation transfo‘rmatlon clipping
C2N
OCS - object/model coordinate system v CCS
perspective
WCS - world coordinate system divide |normalized
VCS - viewing/camera/eye coordinate ‘ N2D device
system v NDCS
RUTIN : viewport
CCS - clipping coordinate system transformation
NDCS - normalized device coordinate | device
system v DCS

DCS - device/display/screen coordinate
system

22

Goal

simulate interaction of light and objects

fast: fake it!

« approximate the look, ignore real physics

get the physics (more) right

- BRDFs: Bidirectional Reflection Distribution Functions
local model: interaction of each object with light
global model: interaction of objects with each other

23

Photorealistic lllumination

transport of energy from light sources to surfaces & points
global includes direct and indirect illumination — more later

[electricimage.com]

Henrik Wann Jensen

24

lllumination in the Pipeline

local illumination

* only models light arriving directly from light
source

* no interreflections or shadows

 can be added through tricks, multiple
rendering passes

light sources

» simple shapes

materials

 simple, non-physical reflection models

25

Light Sources

* types of light sources

* glLightfv(GL LIGHTO,GL POSITION,light[])
- directional/parallel lights

* real-life example: sun

* infinitely far source: homogeneous coord w=0
 point lights

» same intensity in all directions
 spot lights

* limited set of directions:

- point+direction+cutoff angle \\4
v Y

IH N \< ><I

26

lo N \< >‘<|

Light Sources

- area lights
* light sources with a finite area
* more realistic model of many light sources

* not available with projective rendering pipeline
(i.e., not available with OpenGL)

\4 V/VV\ VYV 4

27

Light Sources

- ambient lights
* no identifiable source or direction

* hack for replacing true global illumination
* (diffuse interreflection: light bouncing off from

other objects) \

: 4—

28

Diffuse Interreflection

29

Ambient Light Sources

* scene lit only with an ambient light source

Light Position
Not Important

Viewer Position
Not Important

Surface Angle
Not Important

30

Directional Light Sources

» scene lit with directional and ambient light

Surface Angle
Important

Light Position
Not Important

Viewer Position
Not Important

31

Point Light Sources

* scene lit with ambient and point light source

Light Position
Important

Viewer Position
Important

Surface Angle
Important

32

Light Sources

» geometry: positions and directions
» standard: world coordinate system

» effect: lights fixed wrt world geometry

* demo:
http://www.xmission.com/~nate/tutors.html

» alternative: camera coordinate system
- effect: lights attached to camera (car headlights)

* points and directions undergo normal
model/view transformation

* llumination calculations: camera coords

33

Types of Reflection

« specular (a.k.a. mirror or regular) reflection causes

light to propagate without scattering.

* diffuse reflection sends light in all directions with

equal energy.
Y

* mixed reflection is a weighted
combination of specular and diffuse. /\JA

34

Specular Highlights

35

Types of Reflection

* retro-reflection occurs when incident energy
reflects in directions close to the incident
direction, for a wide range of incident

directions. X_\

 gloss is the property of a material surface
that involves mixed reflection and is
responsible for the mirror like appearance of

rough surfaces.
4
Nz

36

Reflectance Distribution Model

* most surfaces exhibit complex reflectances
* vary with incident and reflected directions.
* model with combination

VARV 2. v

specular + glossy + diffuse =
reflectance distribution

37

Surface Roughness

* at a microscopic scale, all

real surfaces are rough ~ —N\

* cast shadows on
themselves

* "mask” reflected light:

asked Light

38

Surface Roughness

NN

 notice another effect of roughness:
* each “microfacet” is treated as a perfect mirror.

* incident light reflected in different directions by
different facets.

 end result is mixed reflectance.
» smoother surfaces are more specular or glossy.

* random distribution of facet normals results in diffuse
reflectance.

39

Physics of Diffuse Reflection

ideal diffuse reflection
* very rough surface at the microscopic level
* real-world example: chalk

* microscopic variations mean incoming ray of
light equally likely to be reflected in any
direction over the hemisphere

- what does the reflected intensity depend on?

N

40

Lambert’s Cosine Law

e [deal diffuse surface reflection

the energy reflected by a small portion of a surface from a light source
in a given direction is proportional to the cosine of the angle between
that direction and the surface normal

* reflected intensity

* independent of viewing direction
» depends on surface orientation wrt light

» often called Lambertian surfaces

41

Lambert’s Law

Lambert's Cosine Law

intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

Computing Diffuse Reflection

* depends on angle of incidence: angle between surface
normal and incoming light

. _ / An
Lgiffuse = Kd Tlight €08 0

* in practice use vector arithmetic
* Ldiffuse = Kd light 1)

- always normalize vectors used in lighting!!!
* n, 1 should be unit vectors

« scalar (B/W intensity) or 3-tuple or 4-tuple (color)
 k,: diffuse coefficient, surface color
lignt: INcoming light intensity
l4iruse: OUtgoINg light intensity (for diffuse reflection)

43

Diffuse Lighting Examples

» Lambertian sphere from several lighting
angles:

* need only consider angles from 0° to 90°
* why?
* demo: Brown exploratory on reflection

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/ex
ploratories/applets/reflection2D/reflection_2d java browser.html

44

