

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010

Tamara Munzner

Transformations III

Week 3, Mon Jan 18

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

CS dept announcements

- Undergraduate Summer Research Award (USRA)
 - applications due Feb 26
 - see Guiliana for more details

Department of Computer Science Undergraduate Events

Events this week

Drop-in Resume/Cover Letter Editing

Date: Tues., Jan 19

Time: 12:30 – 2 pm

Location: Rm 255, ICICS/CS Bldg.

Interview Skills Workshop

Date: Thurs., Jan 21

Time: 12:30 – 2 pm

Location: DMP 201

Registration: Email <u>dianejoh@cs.ubc.ca</u>

Project Management Workshop

Speaker: David Hunter (ex-VP, SAP)

Date: Thurs., Jan 21

Time: 5:30 – 7 pm

Location: DMP 110

CSSS Laser Tag

Date: Sun., Jan 24

Time: 7 - 9 pm

Location: Planet Laser

@ 100 Braid St., New

Westminster

Event next week

Public Speaking 11

Date: Mon., Jan 25

Time: 5-6 pm

Location: DMP 101

Assignments

Assignments

- project 1
 - out today, due 5pm sharp Fri Jan 29
 - projects will go out before we've covered all the material
 - so you can think about it before diving in
 - build iguana out of cubes and 4x4 matrices
 - think cartoon, not beauty
 - template code gives you program shell, Makefile
 - http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010/p1.tar.gz
- written homework 1
 - out today, due 5pm sharp Wed Feb 6
 - theoretical side of material

Demo

animal out of boxes and matrices

Real Iguanas

http://funkman.org/animal/reptile/iguana1.jpg

http://www.mccullagh.org/db9/d30-3/iguana-closeup.jpg

http://www.naturephoto-cz.com/photos/sevcik/green-iguana--iguana-iguana-1.jpg

Armadillos!

Armadillos!

Monkeys!

Monkeys!

Giraffes!

Giraffes!

- do not model everything first and only then worry about animating
- interleave modelling, animation
 - for each body part: add it, then jumpcut animate, then smooth animate
 - discover if on wrong track sooner
 - dependencies: can't get anim credit if no model
 - use body as scene graph root
- check from all camera angles

- finish all required parts before
 - going for extra credit
 - playing with lighting or viewing
- ok to use glRotate, glTranslate, glScale
- ok to use glutSolidCube, or build your own
 - where to put origin? your choice
 - center of object, range .5 to +.5
 - corner of object, range 0 to 1

- visual debugging
 - color cube faces differently
 - colored lines sticking out of glutSolidCube faces
 - make your cubes wireframe to see inside
- thinking about transformations
 - move physical objects around
 - play with demos
 - Brown scenegraph applets

- smooth transition
 - change happens gradually over X frames
 - key click triggers animation
 - one way: redraw happens X times
 - linear interpolation:
 each time, param += (new-old)/30
 - or redraw happens over X seconds
 - even better, but not required

- transitions
 - safe to linearly interpolate parameters for glRotate/glTranslate/glScale
 - do not interpolate individual elements of 4x4 matrix!

Style

- you can lose up to 15% for poor style
- most critical: reasonable structure
 - yes: parametrized functions
 - no: cut-and-paste with slight changes
- reasonable names (variables, functions)
- adequate commenting
 - rule of thumb: what if you had to fix a bug two years from now?
- global variables are indeed acceptable

Version Control

- bad idea: just keep changing same file
- save off versions often
 - after got one thing to work, before you try starting something else
 - just before you do something drastic
- how?
 - not good: commenting out big blocks of code
 - a little better: save off file under new name
 - p1.almostworks.cpp, p1.fixedbug.cpp
- much better: use version control software
 - strongly recommended

Version Control Software

- easy to browse previous work
- easy to revert if needed
- for maximum benefit, use meaningful comments to describe what you did
 - "started on tail", "fixed head breakoff bug", "leg code compiles but doesn't run"
- useful when you're working alone
- critical when you're working together
- many choices: RCS, CVS, svn/subversion
 - all are installed on lab machines
 - svn tutorial is part of next week's lab

Graphical File Comparison

- installed on lab machines
 - xfdiff4 (side by side comparison)
 - xwdiff (in-place, with crossouts)
- Windows: windiff
 - http://keithdevens.com/files/windiff
- Macs: FileMerge
 - in /Developer/Applications/Utilities

Readings for Transformations I-IV

- FCG Chap 6 Transformation Matrices
 - except 6.1.6, 6.3.1
- FCG Sect 13.3 Scene Graphs
- RB Chap Viewing
 - Viewing and Modeling Transforms until Viewing Transformations
 - Examples of Composing Several Transformations through Building an Articulated Robot Arm
- RB Appendix Homogeneous Coordinates and Transformation Matrices
 - until Perspective Projection
- RB Chap Display Lists

Review: Shear, Reflection

- shear along x axis
 - push points to right in proportion to height

- reflect across x axis
 - mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Review: 2D Transformations

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Review: Linear Transformations

- linear transformations are combinations of
 - shear
 - scalerotate

 - reflect

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = ax + by$$

$$x' = ax + by$$
$$y' = cx + dy$$

- properties of linear transformations
 - satisfies T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: Homogeneous Coordinates

homogeneous

cartesian

$$(x, y, w) \xrightarrow{/w} (\frac{x}{w}, \frac{y}{w})$$

- point in 2D cartesian + weight w = point P in 3D homog. coords
 - multiples of (x,y,w) form 3D line L
 - all homogeneous points on L represent same 2D cartesian point
 - homogenize to convert homog. 3D point to cartesian 2D point:
 - divide by w to get (x/w, y/w, 1)
 - projects line to point onto w=1 plane
 - like normalizing, one dimension up²⁷

Review: Homogeneous Coordinates

2D transformation matrices are now 3x3:

$$\mathbf{R}otation = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{S}cale = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}ranslation = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \quad \text{use rightmost column!}$$

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x*1+a*1 \\ y*1+b*1 \\ 1 \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$$

Review: Affine Transformations

- affine transforms are combinations of
 - linear transformations
 - translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Review: 3D Transformations

shear(hxy,hxz,hyx,hyz,hzx,hzy)
$$\begin{bmatrix} 1 & hyx & hzx & 0 \\ hxy & 1 & hzy & 0 \\ hxz & hyz & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
,c) scale(a,b,c)

translate(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & a \\ & 1 & & b \\ & & 1 & c \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & & & \\ & b & & \\ & & c & \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

scale(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotate(
$$x$$
, θ)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ \cos \theta & -\sin \theta & \\ \sin \theta & \cos \theta & \\ & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & & \sin \theta \\ & & 1 \\ -\sin \theta & & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ & & 1 \end{bmatrix}$$

Rotate(
$$y, \theta$$
)

$$\begin{bmatrix} \cos\theta & \sin\theta \\ 1 \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Rotate(z, θ)

$$\begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}$$
1

Review: Composing Transformations

ORDER MATTERS!

Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta

- translations commute
- rotations around same axis commute
- rotations around different axes do not commute
- rotations and translations do not commute

Review: Composing Transformations

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system
 - OpenGL updates current matrix with postmultiply
 - glTranslatef(2,3,0);
 - glRotatef(-90,0,0,1);
 - glVertexf(1,1,1);
 - specify vector last, in final coordinate system
 - first matrix to affect it is specified second-to-last

More: Composing Transformations

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - draw thing
 - rotate thing by -90 degrees wrt origin
 - translate it (-2, -3) over

More: Composing Transformations

$$p' = TRp$$

- which direction to read?
 - left to right
 - interpret operations wrt local coordinates
 - changing coordinate system
 - translate coordinate system (2, 3) over
 - rotate coordinate system 90 degrees wrt origin
 - draw object in current coordinate system
 - in OpenGL, cannot move object once it is drawn!!

General Transform Composition

- transformation of geometry into coordinate system where operation becomes simpler
 - typically translate to origin

perform operation

transform geometry back to original coordinate system

Rotation About an Arbitrary Axis

- axis defined by two points
- translate point to the origin
- rotate to align axis with z-axis (or x or y)
- perform rotation
- undo aligning rotations
- undo translation

Arbitrary Rotation

- arbitrary rotation: change of basis
 - given two orthonormal coordinate systems XYZ and ABC
 - A's location in the XYZ coordinate system is $(a_X, a_y, a_z, 1), ...$

Arbitrary Rotation

- arbitrary rotation: change of basis
 - given two orthonormal coordinate systems XYZ and ABC
 - A's location in the XYZ coordinate system is $(a_X, a_y, a_z, 1), ...$

Arbitrary Rotation

- arbitrary rotation: change of basis
 - given two orthonormal coordinate systems XYZ and ABC
 - A's location in the XYZ coordinate system is (a_X, a_y, a_Z, 1), ...
- transformation from one to the other is matrix R whose columns are A,B,C:

$$R(X) = \begin{bmatrix} a_x & b_x & c_x & 0 \\ a_y & b_y & c_y & 0 \\ a_z & b_z & c_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = (a_x, a_y, a_z, 1) = A$$

Transformation Hierarchies

Transformation Hierarchies

- scene may have a hierarchy of coordinate systems
 - stores matrix at each level with incremental transform from parent's coordinate system

41

 draw same 3D data with different transformations: instancing

Transformation Hierarchies Demo

transforms apply to graph nodes beneath

Transformation Hierarchies Demo

transforms apply to graph nodes beneath

Matrix Stacks

- challenge of avoiding unnecessary computation
 - using inverse to return to origin
 - computing incremental T₁ -> T₂

Matrix Stacks

Modularization

- drawing a scaled square
 - push/pop ensures no coord system change

```
void drawBlock(float k) {
  glPushMatrix();

glScalef(k,k,k);
  glBegin(GL_LINE_LOOP);
  glVertex3f(0,0,0);
  glVertex3f(1,0,0);
  glVertex3f(1,1,0);
  glVertex3f(0,1,0);
  glPopMatrix();
}
```


Matrix Stacks

- advantages
 - no need to compute inverse matrices all the time
 - modularize changes to pipeline state
 - avoids incremental changes to coordinate systems
 - accumulation of numerical errors
- practical issues
 - · in graphics hardware, depth of matrix stacks is limited
 - (typically 16 for model/view and about 4 for projective matrix)


```
glLoadIdentity();
glTranslatef(4,1,0);
glPushMatrix();
glRotatef(45,0,0,1);
glTranslatef(0,2,0);
glScalef(2,1,1);
glTranslate(1,0,0);
glPopMatrix();
```



```
glTranslate3f(x,y,0);
glRotatef(\theta_1,0,0,1);
DrawBody();
glPushMatrix();
 glTranslate3f(0,7,0);
 DrawHead();
glPopMatrix();
glPushMatrix();
 glTranslate(2.5,5.5,0);
 glRotatef(\theta_2,0,0,1);
 DrawUArm();
 glTranslate(0,-3.5,0);
 glRotatef(\theta_3,0,0,1);
  DrawLArm();
glPopMatrix();
... (draw other arm)
```

Hierarchical Modelling

- advantages
 - define object once, instantiate multiple copies
 - transformation parameters often good control knobs
 - maintain structural constraints if well-designed
- limitations
 - expressivity: not always the best controls
 - can't do closed kinematic chains
 - keep hand on hip
 - can't do other constraints
 - collision detection
 - self-intersection
 - walk through walls