University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Transformations lli

Week 3, Mon Jan 18

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

* CS dept announcements

* Undergraduate Summer Research Award
(USRA)

 applications due Feb 26
* see Guiliana for more details

Drop-in Resume/Cover Letter Editing

Date: Tues., Jan 19
Time: 12:30 - 2 pm
Location: Rm 255, ICICS/CS Bldg.

Interview Skills Workshop

Date: Thurs., Jan 21
Time: 12:30 - 2 pm
Location: DMP 201

Registration: Email dianejoh@cs.ubc.ca

Project Management Workshop

Speaker: David Hunter (ex-VP, SAP)
Date: Thurs., Jan 21

Time: 5:30—-7 pm

Location: DMP 110

CSSS Laser Tag

Date: Sun., Jan 24
Time: 7-9pm
Location: Planet Laser

@ 100 Braid St., New
Westminster

Public Speaking 11

Date: Mon., Jan 25
Time: 5—6 pm
Location: DMP 101

Assignments

Assignments

project 1
 out today, due 5pm sharp Fri Jan 29

* projects will go out before we’ve covered all the material
* s0 you can think about it before diving in

* build iguana out of cubes and 4x4 matrices
* think cartoon, not beauty

+ template code gives you program shell, Makefile
 http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010/p1.tar.gz

written homework 1
 out today, due 5pm sharp Wed Feb 6
* theoretical side of material

Demo

* animal out of boxes and matrices

Real Iguanas

http://funkman.org/animal/reptile/iguanal .jpg

T "‘*

.‘1 e
»

1!;' P ~

N SR S A
http://www.naturephoto-cz.com/photos/sevcik/
green-iguana--iguana-iguana-1.jpg

http://www.mccullagh.org/db9/d30-3/iguana-closeup.jpg

Armadillos!

Armadillos!

Monkeys!

Monkeys!

11

Giraffes!

12

Giraffes!

13

Project 1 Advice

* do not model everything first and only then
worry about animating

* Interleave modelling, animation

* for each body part: add it, then jumpcut
animate, then smooth animate

» discover if on wrong track sooner

» dependencies: can’'t get anim credit if no
model

* use body as scene graph root
» check from all camera angles

14

Project 1 Advice

* finish all required parts before
* going for extra credit
* playing with lighting or viewing
* ok to use glIRotate, glTranslate, glScale
* ok to use glutSolidCube, or build your own

» where to put origin”? your choice
e center of object, range - .5to +.5
» corner of object, range 0 to 1

15

Project 1 Advice

* visual debugging
» color cube faces differently

» colored lines sticking out of glutSolidCube
faces

* make your cubes wireframe to see inside
* thinking about transformations
* move physical objects around

» play with demos
* Brown scenegraph applets

16

Project 1 Advice

* smooth transition
» change happens gradually over X frames
* key click triggers animation

* one way: redraw happens X times
* linear interpolation:
each time, param += (new-o0ld)/30
* or redraw happens over X seconds
 even better, but not required

17

Project 1 Advice

* transitions

- safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

» do not interpolate individual elements of 4x4
matrix!

18

Style

you can lose up to 15% for poor style
most critical: reasonable structure

* yes: parametrized functions

* no: cut-and-paste with slight changes
reasonable names (variables, functions)
adequate commenting

* rule of thumb: what if you had to fix a bug two
years from now?

global variables are indeed acceptable

19

Version Control

bad idea: just keep changing same file

save off versions often

- after got one thing to work, before you try starting something
else

* just before you do something drastic
how?
« not good: commenting out big blocks of code

* a little better: save off file under new name
+ p1.almostworks.cpp, p1.fixedbug.cpp

much better: use version control software
- strongly recommended

20

Version Control Software

easy to browse previous work
easy to revert if needed

for maximum benefit, use meaningful comments to describe
what you did

- “started on tail”, “fixed head breakoff bug”, “leg code compiles but
doesn’t run”

useful when you’re working alone
critical when you're working together

many choices: RCS, CVS, svn/subversion
- all are installed on lab machines
* svn tutorial is part of next week'’s lab

21

Graphical File Comparison

* installed on lab machines

- xfdiff4 (side by side comparison)

» xwdiff (in-place, with crossouts)
* Windows: windiff

* http://keithdevens.com/files/windiff
* Macs: FileMerge

* in /Developer/Applications/Utilities

22

Readings for Transformations I-IV

FCG Chap 6 Transformation Matrices
« except6.1.6,6.3.1

FCG Sect 13.3 Scene Graphs
RB Chap Viewing
* Viewing and Modeling Transforms until Viewing Transformations

« Examples of Composing Several Transformations through
Building an Articulated Robot Arm

RB Appendix Homogeneous Coordinates and Transformation
Matrices

* until Perspective Projection
RB Chap Display Lists

23

Review: Shear, Reflection

* shear along x axis

« push points to right in proportion to height

A

y
9
@ >
X
* reflect across x axis

° mirror

y

-\

L

Review: 2D Transformations

matrix multiplication matrix multiplication
X' a 0][x x' COS(H) —sin(H X
V' 10 b y ' sin(@) cos(@) h%
H_I | & ~ J
scaling matrix rotation matrix
(X,y") vector addition |
X a X+a X
+ —] =
T(Xay (aab) y b [y+b:| |:yva
- a b][x] [x']
c dllyl |V
L 1S B

translation multiplication matrix?? 2>

Review: Linear Transformations

* |inear transformations are combinations of

* shear .]
. scale X a b

* rotate y' c d
* reflect S]

« properties of linear transformations
* satisifes T(sx+ty) =s T(x) + t T(y)

* origin maps to origin
* lines map to lines

S

y

* parallel lines remain parallel

* ratios are preserved
 closed under composition

xX'=ax + by

y'=cx+dy

26

Review: Homogeneous Coordinates

homogeneous cartesian
Iw X y
(xa YV W) g (_ s
i w w
X:w
yew point in 2D cartesian + weight w =

point P in 3D homog. coords
. multiples of (x,y,w) form 3D line L

. all homogeneous points on L
represent same 2D cartesian point

nhomogenize to convert homog. 3D
point to cartesian 2D point:

. divide by w to get (x/w, y/w, 1)

. projects line to point onto w=1 plane
. like normalizing, one dimension up?/

Review: Homogeneous Coordinates

« 2D transformation matrices are now 3x3:

cos() -sm(0) O]
Rotation = |sin(0) cos(6) O Scale =
0 0 1

S O K
oS o O
_—0 O

Translation = use rightmost column!

o O =
[=)
NN

(xx1+ax1] [x+a]

o O =
S = O

a
blly|=|y*1l+b*x1l|=|y+b
1{[1 1 1

Review: Affine Transformations

« affine transforms are combinations of
* linear transformations .

_ X a b cl[x

* translations |
V'i=|d e f|ly
w O 0 11(|lw

» properties of affine transformations
* origin does not necessarily map to origin
* lines map to lines
* parallel lines remain parallel
* ratios are preserved
 closed under composition

29

Review: 3D Transformations

1 hyx hzx
shear(hxy,hxz,hyx,hyz,hzx,hzy) |/xy 1 hzy
hxz hyz 1
translate(a,b,c) scale(a,b,c) | 0 0 0
x'T [1 allx’ X'l [a X
I I D R | Y I £ B B y
z' 1 cl|z z' c z
] 1{|1 1) It
Rotate(x,0) Rotate(y,0) Rotate(z,0)
x'T [1 1M x] [cosO sin 6 1 [cos@ —sin6
' cosf® -—sinf y 1 sin@ cosf
2| sinf cosO z —sin@ cos6 1
_1 _ 1_ _1_ 1_

—_ O O O

Review: Composing Transformations

ORDER MATTERS!

R{45)T(1,1)

A
T{1,1) R{45) @

Ta Tb =Tb Ta, but Ra Rb !=Rb Ra and Ta Rb '=Rb Ta

translations commute
* rotations around same axis commute
* rotations around different axes do not commute
« rotations and translations do not commute

31

Review: Composing Transformations
p'=TRp

« which direction to read?
* right to left
* interpret operations wrt fixed coordinates
* moving object
e |eft to right OpenGL pipeline ordering!
* interpret operations wrt local coordinates
e changing coordinate system

* OpenGL updates current matrix with postmultiply
 glTranslatef(2,3,0);
 glRotatef(-90,0,0,1);
- glVertexf(1,1,1);

* specify vector last, in final coordinate system

* first matrix to affect it is specified second-to-last 32

More: Composing Transformations
p'=TRp

« which direction to read?
* right to left —

* interpret operations wrt fixed coordinates
* moving object
 draw thing

» rotate thing by -90 degrees wrt origin
* translate it (-2, -3) over

33

More: Composing Transformations
p'=TRp

« which direction to read?
- left to right EE—

* interpret operations wrt local coordinates

* changing coordinate system
* translate coordinate system (2, 3) over
* rotate coordinate system 90 degrees wrt origin
« draw object in current coordinate system

 in OpenGL, cannot move object once it is drawn!!

34

General Transform Composition

* transformation of geometry into coordinate
system where operation becomes simpler

* typically translate to origin
» perform operation

» transform geometry back to original
coordinate system

35

Rotation About an Arbitrary Axis

axis defined by two points

translate point to the origin

rotate to align axis with z-axis (or x ory)
perform rotation

undo aligning rotations

undo translation

36

Arbitrary Rotation

®

-
X
z C
* arbitrary rotation: change of basis

* given two orthonormal coordinate systems XYZ and ABC
* A’s location in the XYZ coordinate system is (ay, ay, az, 1), ...

Arbltrary Rotatlon
A (by, by, bz, 1)

®

X
Z C

* arbitrary rotation: change of basis

* given two orthonormal coordinate systems XYZ and ABC
* A’s location in the XYZ coordinate system is (ay, ay, az, 1), ...

(Cy Cy: Cz: 1)

o)

X
V4

>

Arbitrary RotatiPn

by by b7 1)

C

(

(Cy Cy: Cz: 1)

* arbitrary rotation: change of basis

* given two orthonormal coordinate systems XYZ and ABC
* A’s location in the XYZ coordinate system is (ay, ay, az, 1), ...

* transformation from one to the other is matrix R whose
columns are A4,B,C:

R(X) =

a,
ay
a

<

0

bx
b)’
b
0

<

Cx
Cy
CZ

0

—_ o o O

"
0
0

1

=(a,a,,a,l)=A

Transformation Hierarchies

40

Transformation Hierarchies

* scene may have a hierarchy of coordinate
systems

» stores matrix at each level with incremental
transform from parent’s coordinate system

* scene graph

41

Transformation Hierarchy Example 1

trans(0.30,0,0) rot(z,0)

42

Transformation Hierarchy Example 2

- draw same 3D data with different
transformations: instancing

43

Transformation Hierarchies Demo

* transforms apply to graph nodes beneath

(l.\ Hegd/and\N\eck Leg jnd\Foot

" & fee

Head Neck leg Foot

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/
scenegraphs.html

44

Transformation Hierarchies Demo

* transforms apply to graph nodes beneath

(l.\ Hegd/and\N\eck Leg jnd\Foot

" & fee

Head Neck leg Foot

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/
scenegraphs.html

45

Matrix Stacks

 challenge of avoiding unnecessary
computation 4

* using inverse to return to origin
« computing incremental T, -> T,

>
Object coordinates

A A

.
.
.
.

.

o
......

World coordinates 46

glPushMatrix()
glPopMatrix()

Matrix Stacks

/ D = C scale(2,2,2) trans(1,0,0)

W
> W0 OO0

> WO | O

DrawSquare()
glPushMatrix()
glScale3f(2,2,2)
glTranslate3f(1,0,0)
DrawSquare()
glPopMatrix()

47

Modularization

* drawing a scaled square
 push/pop ensures no coord system change

void drawBlock (float k) {
glPushMatrix() ;

glScalef (k,k,k) ;
glBegin (GL_LINE LOOP) ;
glvertex3£(0,0,0) ;
glvertex3£(1,0,0) ;
glvertex3£f(1,1,0) ;
glvertex3£(0,1,0) ;
glEnd() ;

glPopMatrix () ;

48

Matrix Stacks

« advantages
* no need to compute inverse matrices all the time
* modularize changes to pipeline state
 avoids incremental changes to coordinate systems
« accumulation of numerical errors
 practical issues

* in graphics hardware, depth of matrix stacks is limited
* (typically 16 for model/view and about 4 for projective matrix)

49

Transformation Hierarchy Example 3

glLoadIdentity () ;

glTranslatef(4,1,0);

glPushMatrix() ;

glRotatef (45,0,0,1) ;
glTranslatef(0,2,0);

glScalef(2,1,1);

glTranslate(1,0,0);

glPopMatrix() ;

50

Transformation Hierarchy Example 4

glTranslate3f(x,y,0);
glRotatef(6,,0,0,1);

DrawBody();

glPushMatrix();

glTranslate3f(0,7,0);

DrawHead();

glPopMatrix();

glPushMatrix();

glTranslate(2.5,5.5,0);

glRotatef(6,,0,0,1);

DrawUArm();

glTranslate(0,-3.5,0);

glRotatef(6,,0,0,1);

DrawlLArm();
glPopMatrix();

... (draw other arm)
51

Hierarchical Modelling

advantages

- define object once, instantiate multiple copies

 transformation parameters often good control knobs

* maintain structural constraints if well-designed
limitations

» expressivity: not always the best controls

» can't do closed kinematic chains

* keep hand on hip
« can’t do other constraints

» collision detection
+ self-intersection
« walk through walls

52

