C

’)
)]

ST University of British Columbia

oA CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

Spatial/Scientific Visualization

Week 12, Fri Apr 9

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010



News

 Reminders
* H4 due Mon 4/11 5pm
* P4 due Wed 4/13 5pm

« Extra TA office hours in lab 005 for P4/H4
* Fri4/9 11-12, 2-4 (Garrett)

Mon 4/12 11-1, 3-5 (Garrett)

Tue 4/13 3:30-5 (Kai)

Wed 4/14 2-4, 5-7 (Shailen)

Thu 4/15 3-5 (Kai)

Fri 4/16 11-4 (Garrett)



Cool Pixar Graphics Talk Today!!

* The Funnest Job on Earth: A Presentation of
Techniques and Technologies Used to
Create Pixar's Animated Films (version 2.0)

- Wayne Wooten, Pixar

* Fri4/9, 4:00 to 5:30 pm, Dempster 110
» great preview of CPSC 426, Animation :-)

* overlaps my usual office hours :-(
» poll: who was planning to come today?



Project 4

* |'ve now sent proposal feedback on proposals to everyone
where | have specific concerns/responses

° NO news is good news
 global reminders/warnings
 you do need framerate counter in your HUD!
* be careful with dark/moody lighting
« can make gameplay impossible
* backup plan: keystroke to brighten by turning more/ambient light

* reminder on timestamps

« if you demo on your machine, | will check timestamps of files to
ensure they match code you submitted through handin

» they must match! do *not* change anything in the directory

 clone code into new directory to keep developing or fix tiny bugs
so that | can quickly check that you've not changed anything else



Review: GPGPU Programming

» General Purpose GPU
* use graphics card as SIMD parallel processor
* textures as arrays
- computation: render large quadrilateral
* multiple rendering passes



Review: Splines

* spline is parametric
curve defined by control
points
* knots: control points i

that lie on curve " A Duck (w'eight)
* engineering drawing:
spline was flexible

wood, control points
were physical weights

d

Ducks trace out curve



Review: Hermite Spline

* user provides Vp,
* endpoints
* derivatives at endpoints

t=0

Pi



Review: Bézier Curves

* four control points, two of which are knots
* more intuitive definition than derivatives

 curve will always remain within convex hull
(bounding region) defined by control points

Vp A
\Y Pi 2/ 'support"
t=1 p | "chord"

Bezier
Hermite Specification Specification °p




Review: Basis Functions

* point on curve obtained by multiplying each control
point by some basis function and summing

X X X X
o = 0o -




Review: Comparing Hermite and Beézier

Hermite

—x1

—x0
—x"1
—X'0

0.8 1

0.6 -

04 -

Bézier

—BO0
—B1
—B2
—B3

10




Review: Sub-Dividing Bézier Curves

» find the midpoint of the line joining M,,,, M,,,.
call it M,,,;

P 1 Mlz P2
M M
012 _olo123 M,,,
M
01 M, ,

11



Review: de Casteljau’s Algorithm

 can find the point on Bézier curve for any parameter
value t with similar algorithm

« for t=0.25, instead of taking midpoints take points 0.25 of the
way

demo: www.saltire.com/applets/advanced geometry/spline/spline.htm

12



Review: Continuity
» piecewise Bezier: no continuity guarantees

» continuity definitions /\/

. CY: share join point
o C1: share continuous derivatives
o C2: share continuous second derivatives

Cop continuit/.\

Co & C; continuity Cy & C; & C,continuity

15



Review: Geometric Continuity

* derivative continuity is important for animation

* if object moves along curve with constant parametric
speed, should be no sudden jump at knots

« for other applications, tangent continuity suffices
* requires that the tangents point in the same direction

- referred to as G’ geometric continuity
- curves could be made C7 with a re-parameterization

- geometric version of C?is G2, based on curves
having the same radius of curvature across the knot

14



Achieving Continuity

* Hermite curves

* user specifies derivatives, so C’ by sharing points and
derivatives across knot

- Bezier curves
- they interpolate endpoints, so C? by sharing control pts

* introduce additional constraints to get C’

« parametric derivative is a constant multiple of vector joining
first/last 2 control points

- so C" achieved by setting P, ;=P, ,=J, and making P, , and J and
P, , collinear, with J-P,, ,=P, ,-J
* C? comes from further constraints on Po;and P, ,

* |eads to...

15



B-Spline Curve

« start with a sequence of control points

* select four from middle of sequence
(Pi-2s Pi-1s Pi» Piss)
- Bezier and Hermite goes between p, , and p.,

« B-Spline doesn’t interpolate (touch) any of them but
approximates the going through p,_, and p

P, o OPZ o Fo
N
P

16



B-Spline

by far the most popular spline used
» C,, C4, and C, continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
17




B-Spline

* locality of points

2
®
Z. \x i 1‘
: :
\ ', i
\ / |
/ |
" / \
RS / i
// / \
/ \ Pl
/ / | £\
/ /
Ny
/
\\ J
{
i N
, [ 4
‘l | / “ ‘/
\, 'y L
2 ¥ )
{a) (b)
Figure 10-41

Local modification of a B-spline curve. Chan
curve (b), which is modified only in the neig

ging one of the control points in (a) produces
hborhood of the altered control point.




Geometric Modelling

 much, much more in CPSC 424!
- offered next year

19



Spatial/Scientific Visualization

20



Reading

 FCG Chapter 28 Spatial Field Visualization
» Chap 23 (2nd ed)

21



Surface Graphics

* objects explicitly defined by surface or
boundary representation

- mesh of polygons

200 polys 1000 polys 15000 polys 22



Surface Graphics

°* pros

fast rendering algorithms available
hardware acceleration cheap

OpenGL API for programming

use texture mapping for added realism

°* COoNns

discards interior of object, maintaining only the shell

operations such cutting, slicing & dissection not
possible

no artificial viewing modes such as semi-
transparencies, X-ray

surface-less phenomena such as clouds, fog & gas
are hard to model and represent

23



Volume Graphics

- for some data, difficult to create polygonal mesh
+ voxels: discrete representation of 3D object
 volume rendering: create 2D image from 3D object

* translate raw densities into colors and
transparencies

- different aspects of the dataset can be emphasized
via changes in transfer functions

24



Volume Graphics

° pros
 formidable technique for data exploration
* Ccons
* rendering algorithm has high complexity!
» special purpose hardware costly (~$3K-$10K)

volumetric human head (CT scan) 25



Isosurfaces

Elevahon

. 2D scalar fields: isolines \
» contour plots, level sets /
’ tOpOgraphIC maps IndexCon‘rour'Lmes

3D scalar fields: isosurfaces

26




Volume Graphics: Examples

anatomical atlas from visible industrial CT - structural failure,
human (CT & MRI) datasets security applications

shockwave visualization: simulation

flow around airplane wing L\ oo Stokes PDEs 2



Isosurface Extraction

* array of discrete point

samples at grid points 9 1 1 °

- 3D array: voxels 1 3 3
 find contours /

» closed, continuous 3 /7 9 3

 determined by iso-value

Z V4 8 2
» several methods
" " /
* marching cubes is most 1 ) 3 3

common
Iso-value = 5

28




MC 1: Create a Cube

» consider a cube defined by eight data values

(i,j+1,k+1) (i+1,j+1,k+1)

(1.3, k+1) i+1,jJk+1)

(i,j+1,k) (i+1,j+1,k)

(i.J;k) (i+1,),k)
29



MC 2: Classify Each Voxel

» classify each voxel according to whether lies
» outside the surface (value > iso-surface

value)
* inside the surface (value <= isg- ce value)
10 10

Iso=9 |

10

Iso 7/

=inside
® -outside

30



MC 3: Build An Index

* binary labeling of each voxel to create index

v8 v7

i -t 11110100
v v3| @ outside=0 y
5
. v6 00110000
v v2  Tndex:

vi|iv2|v3|v4|vb|v6 |Vv7|Vv8

31



MC 4: Lookup Edge List

* use index to access array storing list of edges

 all 256 cases can be derived from 15 base
cases

(70 ) ()
e
W' 8y 10 I

The 15 Cube Combinations



MC 4: Example

* index = 00000001
» tfriangle 1=a, b, c

33



MC 5: Interpolate Triangle Vertex

» for each triangle edge

* find vertex location along edge using linear
interpolation of voxel values

i x i+l

34



MC 6: Compute Normals

e calculate the normal at each cube vertex

* use linear interpolation to compute the
polygon vertex normal

Gx =Viejk ~Vicljk

l

Gy =Viistk ~Vij-1k

G, = Viiikst —Vijk-l

z l

35



MC 7: Render!

36



Direct Volume Rendering

* do not compute surface

37



Rendering Pipeline

38



Classification

» data set has application-specific values
» temperature, velocity, proton density, etc.

» assign these to color/opacity values to make
sense of data

 achieved through transfer functions

39



Transfer Functions

* map data value to color and opacity

¥

1.0

0.0

Voxelldensity

gel - tissue - semi- bo
transparent transparent

T —>

255

ne - opaque

40



Transfer Functions

O REG

A

>

RGO(A) - alf)

(0

shading,
compositing...

Human Tooth CT Gordon Kindlmann




Setting Transfer Functions

« can be difficult, unintuitive, and slow

Gordon Kindlmann

42



Rendering Pipeline

43



Light Effects

 usually only consider reflected part

Light

reflected

absorbed

transmitted

specular

Light

k\
\J\ ambient
M&ﬁuse

Light=refl.+absorbed+trans.

Light=ambient+diffuse+specular

I=k1 +k,I,+kI

44



Rendering Pipeline

Interpolate

45



°© given:

hearest
neighbor

linear

46



Rendering Pipeline

Interpolate

47



Volume Rendering Algorithms

* ray casting

* image order, forward viewing

* splatting

* object order, backward viewing \ Q/i
* texture mapping

* object order

* back-to-front compositing

48



Ray Traversal Schemes

Intensity
4 Max

Average /\

=

Depth

49



Ray Traversal - First

» first: extracts iso-surfaces (again!)

Intensity
A

First,

50



Ray Traversal - Average

» average: looks like X-ray

Intensity
A

Average /\

51



Ray Traversal - MIP

* max: Maximum Intensity Projection
* used for Magnetic Resonance Angiogram

Intensity
4 Max

52



Ray Traversal - Accumulate

» accumulate: make transparent layers visible

Intensity
A

Accu e

53



Splatting

» each voxel represented as fuzzy ball
» 3D gaussian function
+ RGBa value depends on transfer function

* fuzzy balls projected on screen, leaving
footprint called splat

» composite front to back, in object order

sCreen

composite
ﬁ

54



Texture Mapping

« 2D: axis aligned 2D textures
 back to front compositing
« commodity hardware support

* must calculate texture
coordinates, warp to image
plane

» 3D: image aligned 3D texture

* simple to generate texture
coordinates




