University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Procedural Il, Collision

Week 10, Fri Mar 26

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

+ Today office hours slight shift

+ Kai 2:30-5

« my office hours cancelled, I'm sick and will lurch

home right after teaching

* Thu 10-11 lab moved, now Thu 1-2 rest of term
« signup sheet for P3 grading for last time today

- or send email to dingkai AT cs

« by 48 hours after the due date or you'll lose marks

* P3 due today 5pm

Readings

* Procedural:

» FCG Sect 17.6 Procedural Techniques
+ 17.7 Groups of Objects
* (16.6, 16.7 2nd ed)

 Collision:

» FCG Sect 12.3 Spatial Data Structures
* (10.9 2nd edition)

Review: Bump Mapping: Normals As Texture
I WALt
« create illusion of complex % .

geometry model

« control shape effect by
locally perturbing surface
normal

4
[A

Review: Environment Mapping

+ cheap way to achieve reflective effect
« generate image of surrounding
» map to object as texture
+ sphere mapping: texture is distorted fisheye view
 point camera at mirrored sphere
« use spherical texture coordinates

Review: Cube Environment Mapping

* 6 planar textures, sides of cube
* point camera outwards to 6 faces
« use largest magnitude of vector to pick face
« other two coordinates for (s,t) texel location

Review: Volumetric Texture

define texture pattern

over 3D domain - 3D

space containing the

object

« texture function can be
digitized or procedural

« for each point on object
compute texture from
point location in space

+ 3D function p(x,y,z)

Review: Perlin Noise: Procedural Textures

function marble (point)
x = point.x + turbulence (point);

return marble color (sin (x))

Review: Perlin Noise

+ coherency: smooth not abrupt changes
« turbulence: multiple feature sizes

Review: Generating Coherent Noise

* just three main ideas
* nice interpolation
« use vector offsets to make grid irregular
« optimization
« sneaky use of 1D arrays instead of 2D/3D one

Review: Procedural Modeling

textures, geometry

= nonprocedural: explicitly stored in memory

procedural approach
» compute something on the fly
* not load from disk
- often less memory cost
« visual richness
- adaptable precision
noise, fractals, particle systems

Fractal Landscapes

« fractals: not just for “showing math”
« triangle subdivision
« vertex displacement
« recursive until termination condition

http://www_fractal-landscapes.co.uk/images.html

Self-Similarity

« infinite nesting of structure on all scales

Fractal Dimension
* D =log(N)/log(r)
N = measure, r = subdivision scale

+ Hausdorff dimension: noninteger
Koch snowflake

coastline of Britain

Level 2
Length=16/9

Level 3
Length=64/2]

D = log(N)/log(r) D = log(4)/log(3) = 1.26
http:/Awww. n! y/cogsci/chaos/workshop/Fi html 14

L-Systems: after Lindenmayer
» Koch snowflake: F :- FLFRRFLF
« F: forward, R: right, L: left

» Mariano’s Bush:
F=FF-[-F+F+F]+[+F-F-F] }
« angle 16

http://spanky.triumf.ca/wwwi/fractint/Isys/plants.html

1D: Midpoint Displacement

« divide in half
» randomly displace
« scale variance by half

_—
— \\
// ///ﬂ\\\\
T
h(tp:/}ww html

2D: Diamond-Square

+ fractal terrain with diamond-square approach
+ generate a new value at midpoint
- average corner values + random displacement
« scale variance by half each time

N AR

Particle Systems

* loosely defined
» modeling, or rendering, or animation
* key criteria
« collection of particles
= random element controls attributes
« position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency
« predefined stochastic limits: bounds, variance,
type of distribution

Particle System Examples

objects changing fluidly over time
- fire, steam, smoke, water
objects fluid in form
« grass, hair, dust
physical processes
- waterfalls, fireworks, explosions
group dynamics: behavioral

« birds/bats flock, fish school,
human crowd, dinosaur/elephant stampede

Particle Systems Demos

« general particle systems
* http://www.wondertouch.com

* boids: bird-like objects
* http://www.red3d.com/cwr/boids/

Particle Life Cycle

« generation
« randomly within “fuzzy” location
« initial attribute values: random or fixed
« dynamics
- attributes of each particle may vary over time
« color darker as particle cools off after explosion
+ can also depend on other attributes
« position: previous particle position + velocity + time
« death
+ age and lifetime for each particle (in frames)
« or if out of bounds, too dark to see, etc

Particle System Rendering

+ expensive to render thousands of particles
« simplify: avoid hidden surface calculations

« each particle has small graphical primitive
(blob)

« pixel color: sum of all particles mapping to it
» some effects easy
« temporal anti-aliasing (motion blur)
» normally expensive: supersampling over time
« position, velocity known for each particle
« just render as streak

Procedural Approaches Summary

Perlin noise
fractals
L-systems
particle systems

not at all a complete list!
« big subject: entire classes on this alone

23

Collision/Acceleration

Collision Detection

do objects collide/intersect?

- static, dynamic

picking is simple special case of general
collision detection problem

« check if ray cast from cursor position collides
with any object in scene

« simple shooting

« projectile arrives instantly, zero travel time
better: projectile and target move over time
« see if collides with object during trajectory

Collision Detection Applications

determining if player hit wall/floor/obstacle
« terrain following (floor), maze games (walls)
- stop them walking through it
determining if projectile has hit target
determining if player has hit target
« punch/kick (desired), car crash (not desired)
detecting points at which behavior should change
« carin the air returning to the ground
cleaning up animation
+ making sure a motion-captured character’s feet do not pass
through the floor

simulating motion
« physics, or cloth, or something else

From Simple to Complex

» boundary check
« perimeter of world vs. viewpoint or objects
« 2D/3D absolute coordinates for bounds
« simple point in space for viewpoint/objects
« set of fixed barriers
» walls in maze game
« 2D/3D absolute coordinate system
+ set of moveable objects
 one object against set of items
* missile vs. several tanks
» multiple objects against each other
« punching game: arms and legs of players
« room of bouncing balls

27

Naive General Collision Detection

« for each object i containing polygons p
- test for intersection with object j containing
polygons q
« for polyhedral objects, test if object i
penetrates surface of j
- test if vertices of i straddle polygon q of j
« if straddle, then test intersection of polygon q
with polygon p of object i
- very expensive! O(n?)

Fundamental Design Principles

« fast simple tests first, eliminate many potential collisions
« test bounding volumes before testing individual triangles
< exploit locality, eliminate many potential collisions
« use cell structures to avoid considering distant objects
< use as much information as possible about geometry
« spheres have special properties that speed collision testing
exploit coherence between successive tests
« things don't typically change much between two frames

Example: Player-Wall Collisions

first person games must prevent the player

from walking through walls and other

obstacles

most general case: player and walls are

polygonal meshes

each frame, player moves along path not

known in advance

= assume piecewise linear: straight steps on
each frame

« assume player’s motion could be fast

Stupid Algorithm

on each step, do a general mesh-to-mesh
intersection test to find out if the player
intersects the wall

if they do, refuse to allow the player to move
problems with this approach? how can we
improve:

* in response?

* in speed?

31

Collision Response

« frustrating to just stop

« for player motions, often best thing to do is move
player tangentially to obstacle
+ do recursively to ensure all collisions caught
« find time and place of collision
« adjust velocity of player
« repeat with new velocity, start time, start position
(reduced time interval)
» handling multiple contacts at same time
- find a direction that is tangential to all contacts

Accelerating Collision Detection

two kinds of approaches (many others also)

= collision proxies / bounding volumes

« spatial data structures to localize

used for both 2D and 3D

used to accelerate many things, not just

collision detection

* raytracing

« culling geometry before using standard
rendering pipeline

Collision Proxies

proxy: something that takes place of real object

« cheaper than general mesh-mesh intersections
collision proxy (bounding volume) is piece of geometry used
to represent complex object for purposes of finding collision

« if proxy collides, object is said to collide

« collision points mapped back onto original object

good proxy: cheap to compute collisions for, tight fit to the real
geometry

common proxies: sphere, cylinder, box, ellipsoid

- consider: fat player, thin player, rocket, car ...

Trade-off in Choosing Proxies

DRYR

Sphere AABB OBB 6-dop Convex Hull

>

increasing complexity & tightness of fit

decr

» AABB: axis aligned bounding box
« OBB: oriented bounding box, arbitrary alignment
+ k-dops — shapes bounded by planes at fixed orientations
« discrete orientation polytope 35

Pair Reduction

want proxy for any moving object requiring collision
detection

before pair of objects tested in any detail, quickly test if
proxies intersect

when lots of moving objects, even this quick bounding
sphere test can take too long: N2 times if there are N objects
reducing this N2 problem is called pair reduction

pair testing isn’t a big issue until N>50 or so...

Spatial Data Structures

« can only hit something that is close
« spatial data structures tell you what is close
to object
= uniform grid, octrees, kd-trees, BSP trees
» bounding volume hierarchies
- OBB trees

« for player-wall problem, typically use same
spatial data structure as for rendering

» BSP trees most common

Uniform Grids

* axis-aligned
« divide space uniformly

Quadtrees/Octrees

* axis-aligned
* subdivide until no points in cell

39

KD Trees

* axis-aligned
* subdivide in alternating dimensions

BSP Trees

* planes at arbitrary orientation

Bounding Volume Hierarchies

OBB Trees

43

Related Reading

» Real-Time Rendering
» Tomas Moller and Eric Haines
« on reserve in CICSR reading room

Acknowledgement

* slides borrow heavily from
« Stephen Chenney, (UWisc CS679)

9-f201 '9-22.ppt

* slides borrow lightly from
- Steve Rotenberg, (UCSD CSE169)

« http/graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt

