The Rendering Pipeline

Occlusion

For most interesting scenes, some polygons

overlap
Geometry Processing
Hidden Surl:ao.::t_a Removal/ o ‘ # #,_‘pm‘ + ol
Vis|b|||ty Database [Transform. Lighting Transform. ‘ D
€PsSC 314 l
. —{ Texturing H ‘ Devth # Blending %
Rasterization Fragment Processing To render the correct image, we need to determine
which polygons occlude which
Painter’s Algorithm Painter’s Algorithm: Problems Hidden Surface Removal
Simple: render the polygons from back to front, + Intersecting polygons present a problem Object Space Methods:

“painting over” previous polvaons

= | [J

Draw cyan, then green, then red
will this work in the general case?

Even non-intersecting polygons can form a cycle
with no valid visibility order:

Work in 3D before scan conversion
E.g. Painter’s algorithm
Usually independent of resolution

Important to maintain independence of output
device (screen/printer etc.)

Image Space Methods:

Work on per-pixel/per fragment basis after scan
conversion

Z-Buffer/Depth Buffer
Much faster, but resolution dependent

The Z-Buffer Algorithm

What happens if multiple Erimitives occupy the
same pixel on the screen?

Which is allowed to paint the pixel?

]
IEHEEEAED

The Z-Buffer Algorithm
Idea: retain depth after projection transform

Each vertex maintains z coordinate
Relative to eye point
Can do this with canonical viewing volumes

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer
Also called depth buffer
Stores z value at each pixel
At frame beginning, initialize all pixel depths to o
When scan converting: interpolate depth (z) across
polygon
Check z-buffer before storing pixel color in
framebuffer and storing depth in z-buffer

don’t write pixel if its z value is more distant than
the z value already stored there

Z-Buffer

Store (r,g,b,z) foreach pixel

typically 8+8+8+24 bits, can be more
for all i,j {
Depth[i,j] = MAX DEPTH
Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
for all pixels in P {
if (z_pixel < Depth[i,jl) {
Image[i,j] = C_pixel
Depth[i,j] = Z_pixel
}
}
}

Interpolating Z
Edge walking

Just interpolate Z along edges and across spans
Barycentric coordinates

Interpolate z like other

parameters

E.g. color

The Z-Buffer Algorithm (mid-70’s)

History:

Object space algorithms were proposed when
memory was expensive

First 512x512 framebuffer was >$50,000!

Radical new approach at the time
The big idea:
Resolve visibility independently at each pixel

Depth Test Precision

Reminder: projective transformation maps eye-
space z to generic z-range (NDC)

Simple example:
x

Depth Test Precision

Therefore, depth-buffer essentially stores 1/z,
rather than z!

Issue with integer depth buffers

Depth Test Precision

Low precision can lead to depth fighting for far objects

Two different depths in eye space get mapped to
same depth in framebuffer

i v Il High precision for near objects Which object “wins” depends on drawing order and
y 01 0 ofly Low precision for far objects scan-conversion
T| = ; Zxpe Gets worse for larger ratios fn
z 0 0 a bf]|z ’
Rule of thumb: £n < 1000 for 24 bit depth buffer
1 0 0 -1 0ff1 With 16 bits cannot discern millimeter differences
Thus: az._+b b in objects at 1 km distance
Zype=— S —=a+— f |
Zo Zge - £ o
Z-Buffer Algorithm Questions Z-Buffer Pros Z-Buffer Cons
How much memory does the Z-buffer use? Simple!!! Poor for scenes with high depth complexity

Does the image rendered depend on the drawing
order?

Does the time to render the image depend on the
drawing order?

How does Z-buffer load scale with visible polygons?
with framebuffer resolution?

Easy to implement in hardware

Hardware support in all graphics cards today
Polygons can be processed in arbitrary order
Easily handles polygon interpenetration

Need to render all polygons, even if
most are invisible

%%

Shared edges are handled inconsistently
Ordering dependent

Z-Buffer Cons

Requires lots of memory
- (e.g. 1280x1024x32 bits)
Requires fast memory
- Read-Modify-Write in inner loop
Hard to simulate transparent polygons

= We throw away color of polygons behind closest
one

+ Works if polygons ordered back-to-front

—Extra work throws away much of the speed
advantage owe

Object Space Algorithms
Detelrmg;e visibility on object or polygon
eV

Using camera coordinates
Resolution independent

Explicitly compute visible portions of polygons
Early in pipeline

After clipping
Requires depth-sorting

Painter’s algorithm

BSP trees

Object Space Visibility Algorithms

- Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the fragments
to a display:

Object Space Visibility Algorithms

What is the minimum worst-case cost of
compuﬁ:g the fragments for a scene
composed of n polygons?

Answer:

Ofn?)

Object Space Visibility Algorithms

So, for about a decade (late 60s to late 70s) there
was intense interest in finding efficient algorithms
for hidden surface removal

We'll talk about one:
— Binary Space Pattition (BSP) Trees

— Still in use today for ray-tracing, and in
combination with z-buffer

‘W

Binary Space Partition Trees (1979)

BSP Tree: partition space with binary tree of
planes

Idea: divide space recursively into half-spaces by
choosing splitting planes that separate objects in
scene

Preprocessing: create binary tree of planes
Runtime: correctly traversing this tree enumerates
objects from back to front

Creating BSP Trees: Objects

®
&5

&
B X

Creating BSP Trees: Objects
]

N

SEEee €Eee

®
$c®
®

et e

Y/

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Creating BSP Trees: Objects

Splitting Objects

No b ies were h din p
example

But what if a splitting plane passes through
an object?
Split the object; give half to each node

%“"i:n

"

Traversing BSP Trees
Tree creation independent of viewpoint

Preprocessing step
Tree traversal uses viewpoint

Runtime, happens for many different viewpoints
Each plane divides world into near and far

For given viewpoint, decide which side is near and which is far

~ Check which side of plane viewpoirt is on independently for
each tree vertex

~ Treetraversal differs depending on viewpoint!
Recursive algorithm
~ Recurse on far side

Traversing BSP Trees

renderBSP (BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)
near = T->left; far = T->right;
else
near = T->right; far = T->left;
renderBSP (far) ;
if (T is a leaf node)
renderObject (T)

~ Draw object renderBSP (near) ;
= Recurse on near side ©Wellgang Heldieh ©Wellgang Heldieh ©Welgang
BSP Trees : Viewpoint A - BSP Trees : Viewpoint A - BSP Trees : Viewpoint A -

= decide independently at
each tree vertex

= not just left or right child! e—

BSP Trees : Viewpoint B

BSP Trees : Viewpoint B

=0

z

Erhe

BSP Tree Traversal: Polygons
Split along the plane defined by any polygon from
scene

Classify all polygons into positive or negative half-
space of the plane

~ Ifa polygon intersects plane, split polygon into
two and classify them both

Recurse down the negative half-space
Recurse down the positive half-space

BSP Demo

Useful demo:
http://symbolcraft.com/araphics/bsp

Summary: BSP Trees

Pros:
- Simple, elegant scheme

- Correct version of painter’s algorithm back-to-front
rendering approach

- Still very popular for video games (but getting less
s0)

Cons:
« Slow(ish) to construct tree: O(n log n) to split, sort
« Splitting increases polygon count: O(n?) worst-
case

- Computationally intense preprocessing stage
restricts algorithm to static scenes o wetgmgtisir

Optimization using Visibility:
Back-Face Culling

On the surface of a closed orientable manifold,
polygons whose normals point away from the
camera are always occluded:

[~

note: backface culling
alone doesn’t solve the
hidden-surface problem!

Back-Face Culling
Not rendering backfacing polyg
improves performance

Reduces by about half the number of polygons to
be considered for each pixel

Optimization when appropriate

Back-Face Culling

Most objects in scene are typically “solid”
ig ly closed
« Orentable: must have two distinct sides
— Cannot self-intersect
~ A sphere is orientable since has
two sides, ‘inside’ and 'outside’.
‘A Mobius strip or a Klein bottle is
not orientable
+ Closed: surface encloses a volume
~ Sphere is closed manifold
— Plane is not

Back-Face Culling

Most objects in scene are typically “solid”
Rigorously: orientable closed manifolds
- Manifold: local neighborhood of all points isomorphic to disc
Boundary partitions space into interior & exterior

“ooq PF.,
P

Manifold

of manifold obj
Sphere
Torus
Well-formed
CAD part

Back-Face Culling
Examples of ifold obj !
A single polygon

A terrain or height field

Polyhedron w/ missing face

Anything with cracks or holes in boundary |
One-polygon thick lampshade |

Back-face Culling: VCS

first idea:
cullif N, <0

sometimes
misses polygons that
should be culled

better idea:
cull if eye is below polygon plane

Back-face Culling: NDCS

Blending

How might you combine multiple elements?
New color A, old color B

ves < Blending
LAy
NDCS
eye - works to cullif N, >0
Parially 22122330 sttt s
Premultiplying Colors OpenGL Blending OpenGL Blending
Specify opacity with alpha channel: (,g,b,) In OpenGL: Caveats:
€71 0paaue, o5 anslueent o0 ensperent Enable blending Note: alpha blending is an order-dependent
AoverB operation!
C-aA+ (1aB glEnable(GL_BLEND)

But what if B Is also partially transparent?
C=ahA+(1-)pB= oA+ pB-apB
1=Pr (= a-op
3 mukiplies, different equations for appha vs. RGB
Premultiplying by alpha
C=yC,B'=B,A'= cA

C=B+A-oB

V=p+a-ap

Specify alpha channel for colors
glColordf(r, g, b, alpha)
Specify blending function

E.g: gIBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPH)

C= alpha_new*Cnew + (1-alpha_new)*Cold

It matters which object is drawn first AND
Which surface is in front

For 3D scenes, this makes it necessary to keep
track of rendering order explicitly

Possibly also viewpoint-dependent!
E.g. always draw “back” surface first
Also note: interaction with z-buffer

Double Buffer

Double Buffering

Framebuffer:
Piece of memory where the final image is written
Problem:

The display needs to read the contents,
cyclically, while the GPU is already working on
the next frame

Could result in display of partially rendered
images on screen

Solution:
Have TWO buffers

Double Buffering
Front/back buffer:

Each buffer has both color channels and a depth
channel
Important for advanced rendering algorithms
Doubles memory requirements!
Switching buffers:

At end of rendering one frame, simply exchange the
pointers to the front and back buffer

GLUT toolkit: glutSwapBuffers() function
Different functions under windows/X11 if not

Picking/Object Selection

One is currently displayed (front buffer) using GLUT
One is rendered into for the next frame.(back: Wetgmaesion
Interactive Object Selection Manual Ray Intersection

Move cursor over object, click

How to decide what is below?
Ambiguity

Many 3D world objects map to same 2D point
Common approaches

Manual ray intersection

Bounding extents

Selection region with hit list (OpenGL support)

Do all computation at application level
Map selection point to a ray
Intersect ray with all objects in scene.
Advantages
No library dependence

vcs
Manual Ray Intersection Bounding Extents Bounding Extents -
Keep track of axis-aligned bounding Disadvantages

Do all computation at application level
Map selection point to a ray
Intersect ray with all objects in scene.
Advantages
No library dependence
Disadvantages
Difficult to program

Slow: work to do depends on total number and
complexity of objects in scene

rectangles

Conceptually simple
Easy to keep track of boxes in world space

Ak "

Low precision
Must keep track of object-rectangle relationship
Extensions
Do more sophisticated bound bookkeeping
First level: box check. second level: object check

LA

OpenGL Picking
“Render” image in picking mode

Pixels are never written to framebuffer

Only store IDs of objects that would have been
drawn

Procedure
Set unique ID for each pickable object

Call the regular sequence of glBegin/glVertex/glEnd
commands

If possible, skip glColor, giNormal, glTexCoord
etc. for performance

Select/Hit
OpenGL support

Use small region around cursor for viewport
Assign per-object integer keys (names)
Redraw in special mode

Store hit list of objects in region

Examine hit list

Viewport -
Small rectangle around cursor

Change coord sys so fills viewport

Why rectangle instead of point?
People aren't great at positioning mouse

Fitts’s Law: time to acquire a target is function of the
distance to and size of the target

" Lnivale of cl ©verging g

Viewport
Tricky to compute

Invert viewport matrix, set up new orthogonal
gluPickMatrix(x,y,w;h viewport)
X,y cursor point

projection
w, h: sensitivity/slop (in pixels) EI

Simple utility command
Push old setup first, so can pop it later

Render Modes
glRenderMode{mode)

GL_RENDER: normal color buffer
default

» GL_SELECT: selection mode for picking

(GL_FEEDBACK: report objects drawn)

Name Stack -

“names” are just integers
glinitNames()
flat list
glLoadName(name)
or hierarchy supported by stack
glPushName(name), glPopName
Can have multiple names per object
Helpful for identifying objects in a hierarchy

Hierarchical Names Example

for(inti = 0;i < 2; i++) {
glPushName(i);
for(intj = 0;j < 2; j++) {
glPushMatrix();
glPushName(j);
giTranslatef(i*10.0,0, * 10.0);
glPushName(HEADY);
glCallList(snowManHeadDL);
glLoadName(BODY);
glCallList(snowManBodyDL);
glPopName();
glPopName();
glPopMatrix();

}
glPopName();

http://ww

Hit List
glSelectBuffer(int buffersize, GLuint *buffer)

Where to store hit list data
If object overlaps with pick region, create hit
record

Hit record
Number of names on stack
Minimum and minimum depth of object vertices
Depth lies in the z-buffer range [0,1]

Multiplied by 2*32 -1 then rounded to
nearest int

Contents of name stack (bottom entry first)

Using OpenGL Picking

Example code:

int numHitEntries;

GLuint buffer[1000];

glSelectBuffer(1000, buffer);

glRenderMode(GL_SELECT);

drawStuff(); // includes name stack calls
numHitEntries= glRenderMode(GL_RENDER);

// now analyze numHitEntries different hit records
// in the selection buffer

Integrated vs. Separate Pick
Function

Simpler to code
Name stack commands ignored in render mode

parat somive Firneti oreach
Potentially more efficient
Can avoid drawing unpickable objects

grate: use same function to draw and pick

Select/Hit

Advantages
- Faster
— OpenGL support means hardware accel
Only do clipping work, no shading or rasterization
- Flexible precision
— Size of region controllable
* Flexible architecture
— Custom code possible, e.g. guaranteed frame rate
Disadvantages
+ More complex

10

