University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2008

Alla Sheffer

Advanced Rendering
Week 8, Wed Mar 5

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008



Ray-Triangle Intersection

* method in book is elegant but a bit complex

* easier approach: triangle is just a polygon
* intersect ray with plane
normal:n=(b-a)x(c—a)

| I ray:x =e+rd
plane: (p-x)'n=0= X=H
| n
; LALLYSPAPY SRR Chad UM
n d-n

pisaorborc
* check if ray inside triangle



Ray-Triangle Intersection

 check if ray inside triangle

 check if point counterclockwise from each edge (to
its left)

 check if cross product points in same direction as
normal (i.e. if dot is positive)

(b-a)x(x-a)'n=0
(c-b)x(x-b)'n=0

@-¢)x(x-¢)'n=0

cCw

b

* more detalls at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf 3



Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
* lighting and shading

 efficient data structures so we don’t have to
test intersection with every object



Geometric Transformations

 similar goal as in rendering pipeline:

* modeling scenes more convenient using different
coordinate systems for individual objects

* problem

* not all object representations are easy to transform

 problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

* ray tracing has different solution
* ray itself is always affine invariant
* thus: transform ray into object coordinates!



Geometric Transformations

* ray transformation

* for intersection test, it is only important that ray is in
same coordinate system as object representation
* transform all rays into object coordinates

* transform camera point and ray direction by inverse of
model/view matrix

 shading has to be done in world coordinates (where
light sources are given)

* transform object space intersection point to world
coordinates

* thus have to keep both world and object-space ray




Ray Tracing

* Issues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
* lighting and shading

 efficient data structures so we don’t have to
test intersection with every object



Local Lighting

* |ocal surface information (normal...)

» for implicit surfaces F(x,y,z)=0: normal n(x,y,z)
can be easily computed at every intersection
point using the gradient

n(x,y,z) =

(OF (x,y,2)/ 0x)
IF (x,y,2)/ dy
KGF(x,y,Z)/az)

F(x,y,2)=x"+y +z" —r"

* example:

(2x)

n(x,y,z)=|2y

\ 22,

needs to be normalized!



Local Lighting

* local surface information

» alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline

* now easy to use Phong shading!
as discussed for rendering pipeline
- difference with rendering pipeline:
* interpolation cannot be done incrementally

* have to compute barycentric coordinates for
every intersection point (e.g plane equation for
triangles)



Global Shadows

* approach

* to test whether point is in shadow, send out
shadow rays to all light sources

* if ray hits another object, the point lies in
shadow

<

10



Global Reflections/Refractions

e approach

* send rays out in reflected and refracted direction to
gather incoming light

- that light is multiplied by local surface color and
added to result of local shading

<

11



Advanced Phenomena

» Can (not allways efficiently) simulate
» Soft Shadows
* Fog
* Frequency Dependent Light (diamonds &
prisms)
- Barely handle S*DS*
* S — Specular
D - diffuse

12



Total Internal Reflection
As the angle of incidence increases from 0 to greater angles ...

/ b | “
."/

...the refracted ray becomes dimmer (there is less refraction)

...the reflected ray becomes brighter (there is more reflection)

...the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.

http://Iwww.physicsclassroom.com/Class/refrn/U14L3b.html

13



Ray Tracing

* Issues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
* lighting and shading

o efficient data structures so we don’t have to
test intersection with every object

14



Optimized Ray-Tracing

basic algorithm simple but very expensive
optimize by reducing:

* number of rays traced

* number of ray-object intersection calculations
methods

* bounding volumes: boxes, spheres

 spatial subdivision

e uniform
- BSP trees

(more on this later with collision)







Radiosity

* radiosity definition
* rate at which energy emitted or reflected by a surface
* radiosity methods

* capture diffuse-diffuse bouncing of light
« indirect effects difficult to handle with raytracing




Radiosity

* illumination as radiative heat transfer

energy thermometer/eye
packets

reflective objects

» conserve light energy in a volume
* model light transport as packet flow until convergence
* solution captures diffuse-diffuse bouncing of light

* view-independent technique
- calculate solution for entire scene offline
* browse from any viewpoint in realtime

18



Radiosity

+ divide surfaces into small patches

* loop: check for light exchange between all pairs
- form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/Globallllumination/Image/continuous.jpg

escience.anu.edu.au/lecture/cg/Globallllumination/Image/discrete.jpg

19



Better Global lllumination

 ray-tracing: great specular, approx. diffuse
* view dependent

* radiosity: great diffuse, specular ignored
 view independent, mostly-enclosed volumes

« photon mapping: superset of raytracing and radiosity
 view dependent, handles both diffuse and specular well

raytracing nhoton mappinc

graphics.ucsd.edu/~k/ images/cbox.html

20



Subsurface Scattering: Translucency

* light enters and leaves at different locations
on the surface

* bounces around inside
* technical Academy Award, 2003
« Jensen, Marschner, Hanrahan

1 A

‘:} .
I\ T

S Wy

CA

"

-

21



Subsurface Scattering: Marble

22



Subsurface Scattering: Milk vs. Paint

23



Subsurface

Scattering: Skin

RENDERED EYUHENFRIK WANN JEN

24



Subsurface Scattering: Skin

RENDERED EBY HENFRIK WANN JENSEN

25



Non-Photorealistic Rendering

* simulate look of hand-drawn sketches or
paintings, using digital models

Ep— g ” e T

www.red3d.com/cwr/npr/

26



Non-Photorealistic Shading

* cool-to-warm shading

standard cool-to-warm with edges/creases

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

27



Non-Photorealistic Shading

 draw silhouettes: if (e-ny)(e-n,) <0, e=edge-eye vector

» draw creases: if (n,-n,) < rhreshold
standard cool-to-warm with edges/creases

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 28



Image-Based Modelling and Rendering

 store and access only pixels
* no geometry, no light simulation, ...
* input: set of images
* output: image from new viewpoint

* surprisingly large set of possible new viewpoints

* interpolation allows translation, not just rotation
- lightfield, lumigraph: translate outside convex hull of object
* QuickTimeVR: camera rotates, no translation

e can point camera in or out

29



