C

D)
)]

ST University of British Columbia

oA CPSC 314 Computer Graphics

Jan-Apr 2008

Tamara Munzner

Lighting/Shading IV
Advanced Rendering |

Week 8, Mon Mar 3

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

Midterm

* for all homeworks+exams

» good to use fractions/trig functions as
Intermediate values to show work

* but final answer should be decimal number

- allowed during midterm
- calculator

* one notes page, 8.5°x11", one side of page

* your name at top, hand in with midterm, will be
handed back

* must be handwritten

Midterm

* topics covered: through rasterization (H2)
* rendering pipeline
* transforms
* viewing/projection
* rasterization
* topics NOT covered
» color, lighting/shading (from 2/15 onwards)

 H2 handed back, with solutions, on Wed

FCG Reading For Midterm

Ch 1

Ch 2 Misc Math (except for 2.5.1, 2.5.3,
2.71.1,2.7.3,2.8, 2.9)

Ch 5 Linear Algebra (only 5.1-5.2.2, 5.2.5)
Ch 6 Transformation Matrices (except 6.1.6)
Sect 13.3 Scene Graphs

Ch 7 Viewing

Ch 3 Raster Algorithms (except 3.2-3.4, 3.8)

Red Book Reading For Midterm

Ch Introduction to OpenGL

Ch State Management and Drawing
Geometric Objects

App Basics of GLUT (Auxinv 1.1)
Ch Viewing

App Homogeneous Coordinates and
Transformation Matrices

Ch Display Lists

Review: Reflection Equations

* Phong specular model o
4

I =kI_ (ver) ™ |
— “rslight /__
91

‘ SRR x

» or Blinn-Phong specular model

specular

n ..
_ shiny AN
Ispecular _ ksIlight (h * n) % h V

h=(1+v)/2 1

Review: Reflection Equations

full Phong lighting model

- combine ambient, diffuse, specular components

#lights

Itotal = ka amblent EI (kd(n.l)+ k (V.r) Shmy)

gor (hen)
« don’t forget to normalize all vectors: n,l,r,v,h
* n: normal to surface at point
|: vector between light and point on surface
r: mirror reflection (of light) vector
v: vector between viewpoint and point on surface
h: halfway vector (between light and viewpoint)

Review: Lighting

* lighting models
* ambient
* normals don’'t matter
» Lambert/diffuse
* angle between surface normal and light
* Phong/specular
» surface normal, light, and viewpoint

Review: Shading Models

» flat shading

» compute Phong lighting once for entire
polygon
» Gouraud shading

- compute Phong lighting at the vertices and
interpolate lighting values across polygon

Shading

10

Gouraud Shading Artifacts

* perspective transformations

+ affine combinations only invariant under affine,
not under perspective transformations

 thus, perspective projection alters the linear
interpolation!

/;
—— .

Gouraud Shading Artifacts

* perspective transformation problem

» colors slightly “swim” on the surface as objects
move relative to the camera

» usually ignored since often only small
difference

* usually smaller than changes from lighting
variations

* to do it right
» either shading in object space
* or correction for perspective foreshortening
« expensive — thus hardly ever done for colors

12

Phong Shading

* linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel

« same input as Gouraud shading .
* pro: much smoother results

* con: considerably more expensive

* not the same as Phong lighting
* common confusion

* Phong lighting: empirical model to calculate
illumination at a point on a surface

13

Phong Shading

* linearly interpolate the vertex normals
» compute lighting equations at each pixel
* can use specular component

#lights
Lt = KoL+ 3 Il.(kd (n-1,)+ k(v ri)nsm)
N, i=1

remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

14

Phong Shading Difficulties

computationally expensive

» per-pixel vector normalization and lighting
computation!

» floating point operations required

lighting after perspective projection

* messes up the angles between vectors

* have to keep eye-space vectors around
no direct support in pipeline hardware

* but can be simulated with texture mapping

15

Shading Artifacts: Silhouettes

 polygonal silhouettes remain

Gouraud Phong

16

Shading Artifacts: Orientation

 Interpolation dependent on polygon orientation
* view dependence!

Rotate -90°
and color
- same point
— -

Interpolate between
AB and AD

Interpolate between
CD and AD

Shading Artifacts: Shared Vertices

C
B

H

G

vertex B shared by two rectangles
on the right, but not by the one on
the left

first portion of the scanline
Is interpolated between DE and AC

second portion of the scanline
IS interpolated between BC and GH

a large discontinuity could arise

18

Shading Models Summary

» flat shading

» compute Phong lighting once for entire
polygon
» Gouraud shading

- compute Phong lighting at the vertices and
interpolate lighting values across polygon

* Phong shading
» compute averaged vertex normals

* interpolate normals across polygon and
perform Phong lighting across polygon

19

Shutterbug: Flat Shading

20

Shutterbug: Gouraud Shading

21

Shutterbug: Phong Shading

22

Computing Normals

» per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
« computing normal for a polygon

23

Computing Normals

» per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
« computing normal for a polygon
* three points form two vectors

24

Computing Normals

» per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
« computing normal for a polygon
* three points form two vectors

- cross: normal of plane (@-b)x (c-b) P

gives direction

* normalize to unit length!
c GC-b

. which side is up? ab

e convention: points in
counterclockwise a
order

25

Specifying Normals

OpenGL state machine
* uses last normal specified
 if no normals specified, assumes all identical

per-vertex normals
gIlNormal3f(1,1,1);
glVertex31(3,4,5);
gIlNormal31f(1,1,0);
glVertex31(10,5,2);

per-face normals
gIlNormal3f(1,1,1);
glVertex31(3,4,5);
glVertex31(10,5,2);

normal interpreted as direction from vertex location

can automatically normalize (computational cost)
glEnable(GL_NORMALIZE);

26

Advanced Rendering

27

Global lllumination Models

» simple lighting/shading methods simulate
local illumination models

* No object-object interaction
* global illumination models

* more realism, more computation

* leaving the pipeline for these two lectures!
* approaches

* ray tracing

* radiosity

» photon mapping

» subsurface scattering

28

Ray Tracing

 simple basic algorithm
 well-suited for software rendering

» flexible, easy to incorporate new effects
* Turner Whitted, 1990

29

Simple Ray Tracing >/

- view dependent method % O

* cast a ray from viewer’s
eye through each pixel

» compute intersection of
ray with first object in

scene
el bosit
- cast ray from - o projection
: : : projection I proj
Intersection point on reference plane

point

object to light sources

Reflection

mirror effects
 perfect specular reflection 0|6

Refraction

* happens at interface
between transparent object

and surrounding medium
* e.g. glass/air boundary

« Snell's Law
e ¢,sinf, =c,sin0,

* light ray bends based on
refractive indices c,, C,

32

Recursive Ray Tracing >!-

_ 1IN
* ray tracing can handle
* reflection (chrome/mirror)
* refraction (glass)

* shadows

 spawn secondary rays

 reflection, refraction

« if another object is hit,
recurse to find its color y

* shadow projectio

- cast ray from intersection refertence
point to light source, check P°"
If intersects another object

~\pixel positions
on projection
plane

>

33

Basic Algorithm

for every pixel p; {
generate ray r from camera position through pixel p;
for every object o in scene {
If (rintersects 0)

compute lighting at intersection point, using local
normal and material properties; store result in p;

else
p;= background color

34

Ray Tracing Algorithm

Light
Source
\\\llé
N

Image Plane

Shadow
Rays

Reflected
Ray

Refracted
Ray

35

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := Firstintersection(r,scene)
If (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));
else
reflect_color := Black;
iIf (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);

end;

36

Algorithm Termination Criteria

* termination criteria
* no Iintersection
* reach maximal depth
* number of bounces

» contribution of secondary ray attenuated
below threshold

* each reflection/refraction attenuates ray

37

Ray-Tracing Terminology

 terminology:

 primary ray: ray starting at camera
» shadow ray

» reflected/refracted ray

* ray tree: all rays directly or indirectly spawned
off by a single primary ray

* note:

* need to limit maximum depth of ray tree to
ensure termination of ray-tracing process!

38

Ray Trees

- all rays directly or indirectly spawned off by a single
primary ray

Ray traced through scene Ray tree

www.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting web/lighting.pdf 39

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
» lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

40

Ray Generation

» camera coordinate system
* origin: C (camera position)
* viewing direction: v u
* Up vector: u
» X direction: x=v x u
* note:

* corresponds to viewing
transformation in rendering pipeline

* like gluLookAt

41

Ray Generation

» other parameters:
- distance of camera from image plane: d | {———

e
ot
.
.t
(e
ot
X

* image resolution (in pixels): w, i

- left, right, top, bottom boundaries
In image plane: [, r, ¢, b

* then:

- lower left corner ofimage: O=C+d v+/[-X+b-u

 pixel at position i, j (i=0..w-1, j=0..h-1):
r—1 . t=b

° X —_] .—.u

w—1 h—1

=0+i-Ac-x-j-Ayy

BJ=O+ﬁ

42

Ray Generation

* ray in 3D space.:
R, (@)=C+t-(F,-C)=C+tv,,

where = 0...

43

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
» lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

44

Ray - Object Intersections

iInner loop of ray-tracing
* must be extremely efficient

task: given an object o, find ray parameter ¢, such that R, (7)
IS a point on the object
 such a value for t may not exist

solve a set of equations

Intersection test depends on geometric primitive
* ray-sphere
* ray-triangle
* ray-polygon

45

Ray Intersections: Spheres

* spheres at origin
* implicit function

S, v,z): x> +y° +z> =7’

* ray equation

R, (@)=C+tv,; =

+1-

(c +1Vv)

cy+t°vy

\cz +t°v2/

46

Ray Intersections: Spheres

* to determine intersection:
* Insert ray R, (7) into S(x,y,z):

. 2 . 2 . 2 2
(c,+tv) +(c,+tv,) +(c.+tv) =r

» solve for ¢ (find roots)
* simple quadratic equation

47

Ray Intersections: Other Primitives

 implicit functions
* spheres at arbitrary positions
« same thing
 conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)
« same thing (all are quadratic functions!)
* polygons
- first intersect ray with plane
* linear implicit function
 then test whether point is inside or outside of polygon (2D test)
 for convex polygons

* suffices to test whether point in on the correct side of every
boundary edge

* similar to computation of outcodes in line clipping (upcoming)

48

