University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2008

Tamara Munzner

Transformations Il

Week 2, Fri Jan 18

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

Assignments

Assignments

project 1
 out today, due 6pm Wed Feb 6

* projects will go out before we’ve covered all the material
* s0 you can think about it before diving in

* build mouse out of cubes and 4x4 matrices
* think cartoon, not beauty

+ template code gives you program shell, Makefile
* http://www.ugrad.cs.ubc.ca/~cs314/Vian2008/p1.tar.qz

written homework 1
- out Monday, due 1pm sharp Wed Feb 6
* theoretical side of material

Demo

 animal out of boxes and matrices

Real Mice

http://www.scientificillustrator.com/art/wildlife/mouse.jpg

\
f1 1
\‘\: l 1

i

> e

Gina Mikel, www.scientificillustator.com

http://www.dezeen.com/wp-content/uploads/2007/10/mouse-in-a-bottle sq.jpg
http://www.naturephoto-cz.com/photos/andera/house-mouse-13044.jpg

OLb Ll http://www.naturephoto-cz.com/photos/andera/house-mouse-15372.jpg

©Milos' Andeéra

- ..‘Jﬂ.’

www.naturfoto.cz
WWW. A (0]

http://www.com.msu.edu/carcino/Resources/mouse.jpg 5

Think Cartoon

Armadillos!

Monkeys!

Monkeys!

Giraffes!

10

Giraffes!

11

Kangaroos!

12

Project 1 Advice

* do not model everything first and only then
worry about animating

* Interleave modelling, animation

» for each body part: add it, then jumpcut
animate, then smooth animate

» discover if on wrong track sooner

- dependencies: can’t get anim credit if no
model

* use body as scene graph root
» check from all camera angles

13

Project 1 Advice

* finish all required parts before
» going for extra credit
» playing with lighting or viewing
* ok to use glRotate, glTranslate, glScale
* ok to use glutSolidCube, or build your own

» where to put origin? your choice
* center of object, range - .5to +.5
« corner of object, range 0 to 1

14

Project 1 Advice

* visual debugging
» color cube faces differently

» colored lines sticking out of glutSolidCube
faces

* make your cubes wireframe to see inside
* thinking about transformations
* move physical objects around

» play with demos
* Brown scenegraph applets

15

Project 1 Advice

* smooth transition
» change happens gradually over X frames
* key click triggers animation

* one way: redraw happens X times
* linear interpolation:
each time, param += (new-o0ld)/30
* or redraw happens over X seconds
 even better, but not required

16

Project 1 Advice

* transitions

- safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

» do not interpolate individual elements of 4x4
matrix!

17

Style

you can lose up to 15% for poor style
most critical: reasonable structure

* yes: parametrized functions

* no: cut-and-paste with slight changes
reasonable names (variables, functions)
adequate commenting

* rule of thumb: what if you had to fix a bug two
years from now?

global variables are indeed acceptable

18

Version Control

bad idea: just keep changing same file

save off versions often

- after got one thing to work, before you try starting something
else

» just before you do something drastic
how?
* not good: commenting out big blocks of code

 a little better: save off file under new name
« p1.almostworks.cpp, p1.fixedbug.cpp

much better: use version control software
 strongly recommended

19

Version Control Software

easy to browse previous work
easy to revert if needed

for maximum benefit, use meaningful comments to describe
what you did

- “started on tail”, “fixed head breakoff bug”, “leg code compiles but
doesn’t run”

useful when you’re working alone
critical when you're working together

many choices: RCS, CVS, svn/subversion
- all are installed on lab machines
 svn tutorial is part of next week’s lab

20

Graphical File Comparison

* Installed on lab machines

- xfdiff4 (side by side comparison)

» xwdiff (in-place, with crossouts)
* Windows: windiff

* http://keithdevens.com/files/windiff
* Macs: FileMerge

* in /Developer/Applications/Utilities

21

Readings for Jan 16-25

FCG Chap 6 Transformation Matrices
* except 6.1.6, 6.3.1

FCG Sect 13.3 Scene Graphs
RB Chap Viewing
 Viewing and Modeling Transforms until Viewing Transformations

« Examples of Composing Several Transformations through
Building an Articulated Robot Arm

RB Appendix Homogeneous Coordinates and Transformation
Matrices

* until Perspective Projection
RB Chap Display Lists

22

Review: Event-Driven Programming

* main loop not under your control
* VS. procedural
» control flow through event callbacks
* redraw the window now
* key was pressed
* mouse moved

» callback functions called from main loop
when events occur

* mouse/keyboard state setting vs. redrawing

23

Review: 2D Rotation

(X', y')

x" =x cos(0) - y sin(0)
y' = x sin(0) + y cos(0)

X'l [cos(@) -sin(0)][x
: |

sin(@) cos(@) ¥

X, y)

= counterclockwise, RHS

|

24

Review: Shear, Reflection

» shear along x axis

* push points to right in proportion to height

A

y

@ >

* reflect across x axis
° mirror

y
Vs

L

\

Review: 2D Transformations

matrix multiplication matrix multiplication
X' a O][x x' cos(H) —sin(H X
V' 10 b y V' sin(@) cos(H y
H_j \ ~ J
scaling matrix rotation matrix
(X'y") vector addition |
X a X+ d X
+ = =
ek @ IRURRRE
—_—> - - - 1
a bl[x] [x
c dily|l |
L 15 B A

translation multiplication matrix?? 26

Review: Linear Transformations

* |linear transformations are combinations of

* shear

o
. scale X a Dbl|[x

 rotate y' c d y

* reflect

 properties of linear transformations
 satisifes T(sx+ty) =s T(x) +t T(y)

* origin maps to origin

lines map to lines

parallel lines remain parallel
ratios are preserved

closed under composition

X'=ax+ by

y'=cx+dy

27

3D Rotation About Z Axis

x'=xcosf —ysin6

y'=xsn0 + ycosO

Z'=2z

x'l [cos@ —-smB 0 O]fx
' sin@ cosf 0 O}y
21| o 0 1 0|z
1 0 0 0 1]||1
-_g_ene-ral OpenGL command

glRotatef(angle,x,y,z);
= rotate in z
glRotatef(angle,0,0,1);

3D Rotationin X, Y

around x axis: 9glRotatef(angle,1,0,0);

x'l! [1 0 0 O] x]
' 0 cos@ =-sinf Offy
2| |0 sin® cos@ 0|z
1 0 0 0 11

around y axis: 9lRotatef(angle,0,1,0);

(x'] [cosO@ O smmO O]fx
V' 0 1 0 O}y
2| |-sin@ 0 cos@ 0|z
1 0 0O O 1[[1

3D Scaling

0 b 0 0|y
0 0 ¢ 0|z

0 0 O

1

glScalef(a,b,c);

30

1 O

—

3D Translation

B (1 0 0 allx]
y[o 1 0 blly
Q 21710 0 1 ¢z
1 0O 0 0 111

a,b,c >

glTranslatef(a,b,c);

31

3D Shear

[1 hyx hzx

general shear hxz hyz 1

0

hxy 1 hzy O

shear(hxy, hxz, hyx, hyz, hzx, hzy) = 0
0 0O 0 1

» to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

1 h 0 O] 1 0 h 0O
shearAlongXinDirectionOfY (h) = oo shearAlongXinDirectionOfZ(h) = 0 100
00 10 00 10
0 0 0 1] 00 0 1
1 00O 1 0 0 Ol
shearAlongYinDirectionOfX (h) = P00 shearAlongYinDirectionOfZ(h) = 0 1 k0
0 010 0 010
000 I 00 0 I
(1 0 0 0 (1 0 0 O
01 00 e 01 00
shearAlongZinDirectionOfX (h) = o 10 shearAlongZinDirectionOfY (h) = o 1o
000 1 0 0 0 1

32

Summary: Transformations

translate(a,b,c) scale(a,b,c)

x'T [1 al[x] X'l [a 1[x]

i1 bily MN_|b y

z' 1 cl|z z' c z

1 1111 1 1_ _1_
Rotate(x,0) Rotate(y,0) Rotate(z,0)
x'T [1 1M x] [cosO sin O 1 [cos® —sinf
' cosf —sinf y 1 sinf cos6
2| sinf cos6 z —sin@ cosf
1 1|1 1

Undoing Transformations: Inverses

T(X,y,z)_l = T(—x,—y,—z)
T(x,y,2) T(=x,-y,-2) =1

R(z,6)"'= R(z,-0) =R" (z,0) (Ris orthogonal)
R(z,0) R(z,-60) =1

1 1 1
S(sx,sy,sz)”" = S(—,—,—)

SX Sy 82
S(51,59,59)S(—-) =1

SX Sy SZ

34

Composing Transformations

35

Composing Transformations

* translation

T1=T(dx,dy)) =

T2 = T(dx2,dy>) =

P'=T2eP'=T2¢[T1*P]=[T2T1]® P,where

T2T1=

1

1

dxi + dXZ-
dyi + dy2

so translations add

36

Composing Transformations

» scaling

S2 51 =

SX1+ dx2

* rotation

R2e Rl =

sin(01+62)

SV1=S§y2

cos(B1+602) —-sin(01+62)
cos(01+02)

so scales multiply

so rotations add

37

Composing Transformations

ORDER MATTERS!

A A
T{1,1) L R(45)
A
R{45) T{1,1) T{1,1) R{45) @

.. .l

Ta Tb =Tb Ta, but Ra Rb !=Rb Ra and Ta Rb !=Rb Ta

translations commute
* rotations around same axis commute
« rotations around different axes do not commute
* rotations and translations do not commute 38

>

Composing Transformations

suppose we want

Fr

i8%

39

Composing Transformations

suppose we want Rotate(z,-90)

Fol i

i8%

p'=R(z,-90)p

Composing Transformations

suppose we want Rotate(z,-90) Translate(2,3,0)

Fol i

in% T

P'=R(z,-90)p p'=T(2,30)p

41

Composing Transformations

suppose we want Rotate(z,-90) Translate(2,3,0)
Fil i
| } ?; }
Fu 1/
p'=R(z,-90)p p"=T(2,3,0)p

p''=T(2,3,00R(z,-90)p = TRp

42

Composing Transformations
p'=TRp

 which direction to read?
* right to left
* interpret operations wrt fixed coordinates
e moving object
* |eft to right

* interpret operations wrt local coordinates
e changing coordinate system

43

Composing Transformations
p'=TRp

 which direction to read?
* right to left
* interpret operations wrt fixed coordinates
e moving object
e |left to right OpenGL pipeline ordering!

* interpret operations wrt local coordinates
e changing coordinate system

44

Composing Transformations
p'=TRp

« which direction to read?
* right to left
* interpret operations wrt fixed coordinates
e moving object
e |left to right OpenGL pipeline ordering!
* interpret operations wrt local coordinates
e changing coordinate system

* OpenGL updates current matrix with postmultiply
 glTranslatef(2,3,0);
- glRotatef(-90,0,0,1);
- glVertexf(1,1,1);

* specify vector last, in final coordinate system

* first matrix to affect it is specified second-to-last 45

Interpreting Transformations

translate by (-1,0)

L,

(2,1)
@

moving object

(1,1)

L,

intuitive?

changing coordinate system

(1,1)

L,

OpenGL

* same relative position between object and

basis vectors

46

Matrix Composition

* matrices are convenient, efficient way to represent series of
transformations

« general purpose representation
* hardware matrix multiply
* matrix multiplication is associative
* p' = (T7(R*(S™P)))
* p'=(T"R*S)"p
* procedure
 correctly order your matrices!
* multiply matrices together
* result is one matrix, multiply vertices by this matrix
« all vertices easily transformed with one matrix multiply

47

Rotation About a Point: Moving Object

rotate about

p by 6

4"*2:()6

,Y)

T(x,y,2)R(z,0) T(-x,-y,-2)

translate p
to origin

rotate about
origin

translate p

back

A

/

Sl

48

Rotation: Changing Coordinate Systems

* same example: rotation around arbitrary
center

49

Rotation: Changing Coordinate Systems

* rotation around arbitrary center

 step 1: translate coordinate system to rotation
center t

50

Rotation: Changing Coordinate Systems

* rotation around arbitrary center
* step 2: perform rotation

Nz

51

Rotation: Changing Coordinate Systems

* rotation around arbitrary center
» step 3: back to original coordinate system

2

52

General Transform Composition

* transformation of geometry into coordinate
system where operation becomes simpler

» typically translate to origin
» perform operation

* transform geometry back to original
coordinate system

53

Rotation About an Arbitrary Axis

axis defined by two points

translate point to the origin

rotate to align axis with z-axis (or x or y)
perform rotation

undo aligning rotations

undo translation

54

Arbltrary Rotatlon

A (by, by, bz, 1)

o)

> >

X
Z C

* arbitrary rotation: change of basis

* given two orthonormal coordinate systems XYZ and ABC
* A’s location in the XYZ coordinate system is (ay, ay, 8z, 1), ...

* transformation from one to the other is matrix R whose
columns are 4,B,C:

(Cy Cy: Cz: 1)

a b c
a. b. c
R(X) = ay by cy =(a,a,a,l)=A

4 < 4

1
0
0

0 0 0 11

—_ o O O

