

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2008

Tamara Munzner

Transformations II

Week 2, Fri Jan 18

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008

Assignments

Assignments

- project 1
 - out today, due 6pm Wed Feb 6
 - projects will go out before we've covered all the material
 - so you can think about it before diving in
 - build mouse out of cubes and 4x4 matrices
 - think cartoon, not beauty
 - template code gives you program shell, Makefile
 - http://www.ugrad.cs.ubc.ca/~cs314/Vjan2008/p1.tar.gz
- written homework 1
 - out Monday, due 1pm sharp Wed Feb 6
 - theoretical side of material

Demo

animal out of boxes and matrices

Real Mice

http://www.scientificillustrator.com/art/wildlife/mouse.jpg

http://www.dezeen.com/wp-content/uploads/2007/10/mouse-in-a-bottle_sq.jpg

http://www.naturephoto-cz.com/photos/andera/house-mouse-13044.jpg

http://www.naturephoto-cz.com/photos/andera/house-mouse-15372.jpg

http://www.com.msu.edu/carcino/Resources/mouse.jpg

Think Cartoon

Armadillos!

Monkeys!

Monkeys!

Giraffes!

Giraffes!

Kangaroos!

- do not model everything first and only then worry about animating
- interleave modelling, animation
 - for each body part: add it, then jumpcut animate, then smooth animate
 - discover if on wrong track sooner
 - dependencies: can't get anim credit if no model
 - use body as scene graph root
- check from all camera angles

- finish all required parts before
 - going for extra credit
 - playing with lighting or viewing
- ok to use glRotate, glTranslate, glScale
- ok to use glutSolidCube, or build your own
 - where to put origin? your choice
 - center of object, range .5 to +.5
 - corner of object, range 0 to 1

- visual debugging
 - color cube faces differently
 - colored lines sticking out of glutSolidCube faces
 - make your cubes wireframe to see inside
- thinking about transformations
 - move physical objects around
 - play with demos
 - Brown scenegraph applets

- smooth transition
 - change happens gradually over X frames
 - key click triggers animation
 - one way: redraw happens X times
 - linear interpolation:
 each time, param += (new-old)/30
 - or redraw happens over X seconds
 - even better, but not required

- transitions
 - safe to linearly interpolate parameters for glRotate/glTranslate/glScale
 - do not interpolate individual elements of 4x4 matrix!

Style

- you can lose up to 15% for poor style
- most critical: reasonable structure
 - yes: parametrized functions
 - no: cut-and-paste with slight changes
- reasonable names (variables, functions)
- adequate commenting
 - rule of thumb: what if you had to fix a bug two years from now?
- global variables are indeed acceptable

Version Control

- bad idea: just keep changing same file
- save off versions often
 - after got one thing to work, before you try starting something else
 - just before you do something drastic
- how?
 - not good: commenting out big blocks of code
 - a little better: save off file under new name
 - p1.almostworks.cpp, p1.fixedbug.cpp
- much better: use version control software
 - strongly recommended

Version Control Software

- easy to browse previous work
- easy to revert if needed
- for maximum benefit, use meaningful comments to describe what you did
 - "started on tail", "fixed head breakoff bug", "leg code compiles but doesn't run"
- useful when you're working alone
- critical when you're working together
- many choices: RCS, CVS, svn/subversion
 - all are installed on lab machines
 - svn tutorial is part of next week's lab

Graphical File Comparison

- installed on lab machines
 - xfdiff4 (side by side comparison)
 - xwdiff (in-place, with crossouts)
- Windows: windiff
 - http://keithdevens.com/files/windiff
- Macs: FileMerge
 - in /Developer/Applications/Utilities

Readings for Jan 16-25

- FCG Chap 6 Transformation Matrices
 - except 6.1.6, 6.3.1
- FCG Sect 13.3 Scene Graphs
- RB Chap Viewing
 - Viewing and Modeling Transforms until Viewing Transformations
 - Examples of Composing Several Transformations through Building an Articulated Robot Arm
- RB Appendix Homogeneous Coordinates and Transformation Matrices
 - until Perspective Projection
- RB Chap Display Lists

Review: Event-Driven Programming

- main loop not under your control
 - vs. procedural
- control flow through event callbacks
 - redraw the window now
 - key was pressed
 - mouse moved
- callback functions called from main loop when events occur
 - mouse/keyboard state setting vs. redrawing

Review: 2D Rotation

Review: Shear, Reflection

- shear along x axis
 - push points to right in proportion to height

- reflect across x axis
 - mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Review: 2D Transformations

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

matrix multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

rotation matrix

vector addition

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Review: Linear Transformations

- linear transformations are combinations of
 - shear
 - scalerotate

 - reflect

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = ax + by$$

$$x' = ax + by$$
$$y' = cx + dy$$

- properties of linear transformations
 - satisfies T(sx+ty) = s T(x) + t T(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

3D Rotation About Z Axis

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$
$$z' = z$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- general OpenGL command glRotatef(angle,x,y,z);
- rotate in z glRotatef(angle,0,0,1);

3D Rotation in X, Y

around x axis: glRotatef(angle,1,0,0);

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

around y axis: glRotatef(angle,0,1,0);

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

glScalef(a,b,c);

3D Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

glTranslatef(a,b,c);

3D Shear

general shear

$$shear(hxy, hxz, hyx, hyz, hzx, hzy) = \begin{bmatrix} 1 & hyx & hzx & 0 \\ hxy & 1 & hzy & 0 \\ hxz & hyz & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

$$shear Along Xin Direction Of Y(h) = \begin{bmatrix} 1 & h & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad shear Along Xin Direction Of Z(h) = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shearAlongXinDirectionOfZ(h) = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shear A long Y in Direction Of X(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ h & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad shear A long Y in Direction Of Z(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & h & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shearAlongYinDirectionOfZ(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & h & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shear Along Zin Direction Of X(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ h & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad shear Along Zin Direction Of Y(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & h & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$shearAlongZinDirectionOfY(h) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & h & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Summary: Transformations

translate(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & a \\ & 1 & & b \\ & & 1 & c \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & & & \\ & b & & \\ & & c & \\ & & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

scale(a,b,c)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotate(
$$x$$
, θ)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ \cos\theta & -\sin\theta & \\ \sin\theta & \cos\theta & \\ & & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \begin{bmatrix} \cos\theta & & \sin\theta \\ & 1 \\ -\sin\theta & & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ & \sin\theta & \cos\theta \\ & & 1 \end{bmatrix}$$

Rotate (y,θ)

$$\begin{bmatrix} \cos \theta & \sin \theta \\ 1 & \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Rotate(z, θ)

$$\begin{bmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}$$
1

Undoing Transformations: Inverses

$$\mathbf{T}(x,y,z)^{-1} = \mathbf{T}(-x,-y,-z)$$
$$\mathbf{T}(x,y,z) \mathbf{T}(-x,-y,-z) = \mathbf{I}$$

$$\mathbf{R}(z,\theta)^{-1} = \mathbf{R}(z,-\theta) = \mathbf{R}^{\mathrm{T}}(z,\theta)$$
 (R is orthogonal)
 $\mathbf{R}(z,\theta) \mathbf{R}(z,-\theta) = \mathbf{I}$

$$\mathbf{S}(sx, sy, sz)^{-1} = \mathbf{S}(\frac{1}{sx}, \frac{1}{sy}, \frac{1}{sz})$$
$$\mathbf{S}(sx, sy, sz)\mathbf{S}(\frac{1}{sx}, \frac{1}{sy}, \frac{1}{sz}) = \mathbf{I}$$

Composing Transformations

Composing Transformations

translation

$$T1 = T(dx_1, dy_1) = \begin{bmatrix} 1 & dx_1 \\ 1 & dy_1 \\ & 1 \end{bmatrix} \qquad T2 = T(dx_2, dy_2) = \begin{bmatrix} 1 & dx_2 \\ 1 & dy_2 \\ & 1 \end{bmatrix}$$

$$P'' = T2 \bullet P' = T2 \bullet [T1 \bullet P] = [T2 \bullet T1] \bullet P$$
, where

$$T2 \bullet T1 = \begin{bmatrix} 1 & dx_1 + dx_2 \\ 1 & dy_1 + dy_2 \\ 1 & 1 \end{bmatrix}$$

so translations add

scaling

$$S2 \cdot S1 = \begin{bmatrix} sx_{1} * dx_{2} \\ sy_{1} * sy_{2} \\ 1 \end{bmatrix}$$
 so scales multiply

rotation

$$R2 \bullet R1 = \begin{bmatrix} \cos(\theta 1 + \theta 2) & -\sin(\theta 1 + \theta 2) \\ \sin(\theta 1 + \theta 2) & \cos(\theta 1 + \theta 2) \end{bmatrix}$$
 so rotations add

ORDER MATTERS!

Ta Tb = Tb Ta, but Ra Rb != Rb Ra and Ta Rb != Rb Ta

- translations commute
- rotations around same axis commute
- rotations around different axes do not commute
- rotations and translations do not commute

suppose we want

$$p'' = T(2,3,0)R(z,-90)p = TRp$$

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right
 - interpret operations wrt local coordinates
 - changing coordinate system

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system

$$p' = TRp$$

- which direction to read?
 - right to left
 - interpret operations wrt fixed coordinates
 - moving object
 - left to right OpenGL pipeline ordering!
 - interpret operations wrt local coordinates
 - changing coordinate system
 - OpenGL updates current matrix with postmultiply
 - glTranslatef(2,3,0);
 - glRotatef(-90,0,0,1);
 - glVertexf(1,1,1);
 - specify vector last, in final coordinate system
 - first matrix to affect it is specified second-to-last

Interpreting Transformations

translate by (-1,0)

moving object

changing coordinate system

 same relative position between object and basis vectors

Matrix Composition

- matrices are convenient, efficient way to represent series of transformations
 - general purpose representation
 - hardware matrix multiply
 - matrix multiplication is associative
 - $p' = (T^*(R^*(S^*p)))$
 - **p'** = (T*R*S)***p**
- procedure
 - correctly order your matrices!
 - multiply matrices together
 - result is one matrix, multiply vertices by this matrix
 - all vertices easily transformed with one matrix multiply

Rotation About a Point: Moving Object

 $\mathbf{T}(x,y,z)\mathbf{R}(z,\theta)\mathbf{T}(-x,-y,-z)$

same example: rotation around arbitrary center

rotation around arbitrary center

step 1: translate coordinate system to rotation

- rotation around arbitrary center
 - step 2: perform rotation

- rotation around arbitrary center
 - step 3: back to original coordinate system

General Transform Composition

- transformation of geometry into coordinate system where operation becomes simpler
 - typically translate to origin

perform operation

transform geometry back to original coordinate system

Rotation About an Arbitrary Axis

- axis defined by two points
- translate point to the origin
- rotate to align axis with z-axis (or x or y)
- perform rotation
- undo aligning rotations
- undo translation

Arbitrary Rotation

- arbitrary rotation: change of basis
 - given two orthonormal coordinate systems XYZ and ABC
 - A's location in the XYZ coordinate system is (a_X, a_Y, a_Z, 1), ...
- transformation from one to the other is matrix R whose columns are A,B,C:

$$R(X) = \begin{bmatrix} a_x & b_x & c_x & 0 \\ a_y & b_y & c_y & 0 \\ a_z & b_z & c_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = (a_x, a_y, a_z, 1) = A$$