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Assignments

project 1
 out today, due 6pm Wed Feb 6

* projects will go out before we’ve covered all the material
* s0 you can think about it before diving in

* build mouse out of cubes and 4x4 matrices
* think cartoon, not beauty

+ template code gives you program shell, Makefile
* http://www.ugrad.cs.ubc.ca/~cs314/Vian2008/p1.tar.qz

written homework 1
- out Monday, due 1pm sharp Wed Feb 6
* theoretical side of material




Demo

 animal out of boxes and matrices



Real Mice

http://www.scientificillustrator.com/art/wildlife/mouse.jpg
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Gina Mikel, www.scientificillustator.com

http://www.dezeen.com/wp-content/uploads/2007/10/mouse-in-a-bottle sq.jpg
http://www.naturephoto-cz.com/photos/andera/house-mouse-13044.jpg
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Think Cartoon




Armadillos!




Monkeys!




Monkeys!




Giraffes!
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Giraffes!
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Kangaroos!
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Project 1 Advice

* do not model everything first and only then
worry about animating

* Interleave modelling, animation

» for each body part: add it, then jumpcut
animate, then smooth animate

» discover if on wrong track sooner

- dependencies: can’t get anim credit if no
model

* use body as scene graph root
» check from all camera angles
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Project 1 Advice

* finish all required parts before
» going for extra credit
» playing with lighting or viewing
* ok to use glRotate, glTranslate, glScale
* ok to use glutSolidCube, or build your own

» where to put origin? your choice
* center of object, range - .5to +.5
« corner of object, range 0 to 1
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Project 1 Advice

* visual debugging
» color cube faces differently

» colored lines sticking out of glutSolidCube
faces

* make your cubes wireframe to see inside
* thinking about transformations
* move physical objects around

» play with demos
* Brown scenegraph applets
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Project 1 Advice

* smooth transition
» change happens gradually over X frames
* key click triggers animation

* one way: redraw happens X times
* linear interpolation:
each time, param += (new-o0ld)/30
* or redraw happens over X seconds
 even better, but not required
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Project 1 Advice

* transitions

- safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

» do not interpolate individual elements of 4x4
matrix!
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Style

you can lose up to 15% for poor style
most critical: reasonable structure

* yes: parametrized functions

* no: cut-and-paste with slight changes
reasonable names (variables, functions)
adequate commenting

* rule of thumb: what if you had to fix a bug two
years from now?

global variables are indeed acceptable

18



Version Control

bad idea: just keep changing same file

save off versions often

- after got one thing to work, before you try starting something
else

» just before you do something drastic
how?
* not good: commenting out big blocks of code

 a little better: save off file under new name
« p1.almostworks.cpp, p1.fixedbug.cpp

much better: use version control software
 strongly recommended
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Version Control Software

easy to browse previous work
easy to revert if needed

for maximum benefit, use meaningful comments to describe
what you did

- “started on tail”, “fixed head breakoff bug”, “leg code compiles but
doesn’t run”

useful when you’re working alone
critical when you're working together

many choices: RCS, CVS, svn/subversion
- all are installed on lab machines
 svn tutorial is part of next week’s lab

20



Graphical File Comparison

* Installed on lab machines

- xfdiff4 (side by side comparison)

» xwdiff (in-place, with crossouts)
* Windows: windiff

* http://keithdevens.com/files/windiff
* Macs: FileMerge

* in /Developer/Applications/Utilities
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Readings for Jan 16-25

FCG Chap 6 Transformation Matrices
* except 6.1.6, 6.3.1

FCG Sect 13.3 Scene Graphs
RB Chap Viewing
 Viewing and Modeling Transforms until Viewing Transformations

« Examples of Composing Several Transformations through
Building an Articulated Robot Arm

RB Appendix Homogeneous Coordinates and Transformation
Matrices

* until Perspective Projection
RB Chap Display Lists
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Review: Event-Driven Programming

* main loop not under your control
* VS. procedural
» control flow through event callbacks
* redraw the window now
* key was pressed
* mouse moved

» callback functions called from main loop
when events occur

* mouse/keyboard state setting vs. redrawing
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Review: 2D Rotation

(X', y')

x" =x cos(0) - y sin(0)
y' = x sin(0) + y cos(0)

X'l [cos(@) -sin(0)][x
: |

sin(@) cos(@) ¥

X, y)

= counterclockwise, RHS

|
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Review: Shear, Reflection

» shear along x axis

* push points to right in proportion to height

A

y

@ >

* reflect across x axis
° mirror

y
Vs

L

\




Review: 2D Transformations

matrix multiplication matrix multiplication
X' a O][x x' cos(H) —sin(H X
V' 10 b y V' sin(@) cos(H y
H_j \ ~ J
scaling matrix rotation matrix
(X'y") vector addition |
X a X+ d X
+ = =
ek @ IRURRRE
—_—> - - - 1
a bl[x] [x
c dily|l |
L 15 B A

translation multiplication matrix?? 26



Review: Linear Transformations

* |linear transformations are combinations of

* shear

o
. scale X a Dbl|[x

 rotate y' c d y

* reflect

 properties of linear transformations
 satisifes T(sx+ty) =s T(x) +t T(y)

* origin maps to origin

lines map to lines

parallel lines remain parallel
ratios are preserved

closed under composition

X'=ax+ by

y'=cx+dy
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3D Rotation About Z Axis

x'=xcosf —ysin6

y'=xsn0 + ycosO

Z'=2z

x'l [cos@ —-smB 0 O]fx
' sin@ cosf 0 O}y
21| o 0 1 0|z
1 0 0 0 1]||1
-_g_ene-ral OpenGL command

glRotatef(angle,x,y,z);
= rotate in z
glRotatef(angle,0,0,1);



3D Rotationin X, Y

around x axis:  9glRotatef(angle,1,0,0);

x'l! [1 0 0 O] x]
' 0 cos@ =-sinf Offy
2| |0 sin® cos@ 0|z
1 0 0 0 11

around y axis:  9lRotatef(angle,0,1,0);

(x'] [cosO@ O smmO O]fx
V' 0 1 0 O}y
2| |-sin@ 0 cos@ 0|z
1 0 0O O 1[[1




3D Scaling

0 b 0 0|y
0 0 ¢ 0|z

0 0 O

1

glScalef(a,b,c);
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1 O

—

3D Translation

B (1 0 0 allx]
y[ o 1 0 blly
Q 21710 0 1 ¢z
1 0O 0 0 111

a,b,c >

glTranslatef(a,b,c);
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3D Shear

[ 1 hyx  hzx

general shear hxz hyz 1

0

hxy 1 hzy O

shear(hxy, hxz, hyx, hyz, hzx, hzy) = 0
0 0O 0 1

» to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

1 h 0 O] 1 0 h 0O
shearAlongXinDirectionOfY (h) = oo shearAlongXinDirectionOfZ(h) = 0 100
00 10 00 10
0 0 0 1] 00 0 1
1 00O 1 0 0 Ol
shearAlongYinDirectionOfX (h) = P00 shearAlongYinDirectionOfZ(h) = 0 1 k0
0 010 0 010
000 I 00 0 I
(1 0 0 0 (1 0 0 O
01 00 e 01 00
shearAlongZinDirectionOfX (h) = o 10 shearAlongZinDirectionOfY (h) = o 1o
000 1 0 0 0 1
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Summary: Transformations

translate(a,b,c) scale(a,b,c)

x'T [1 al[x] X'l [a 1[x]

i1 bily MN_|b y

z' 1 cl|z z' c z

1 1111 1 1_ _1_
Rotate(x,0) Rotate(y,0) Rotate(z,0)
x'T [1 1M x] [ cosO sin O 1 [cos® —sinf
' cosf —sinf y 1 sinf cos6
2| sinf cos6 z —sin@ cosf
1 1|1 1




Undoing Transformations: Inverses

T(X,y,z)_l = T(—x,—y,—z)
T(x,y,2) T(=x,-y,-2) =1

R(z,6)"'= R(z,-0) =R" (z,0) (Ris orthogonal)
R(z,0) R(z,-60) =1

1 1 1
S(sx,sy,sz)”" = S(—,—,—)

SX Sy 82
S(51,59,59)S(—- ) =1

SX Sy SZ

34



Composing Transformations
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Composing Transformations

* translation

T1=T(dx,dy)) =

T2 = T(dx2,dy>) =

P'=T2eP'=T2¢[T1*P]=[T2T1]® P,where

T2T1=

1

1

dxi + dXZ-
dyi + dy2

so translations add
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Composing Transformations

» scaling

S2 51 =

SX1+ dx2

* rotation

R2e Rl =

sin(01+62)

SV1=S§y2

cos(B1+602) —-sin(01+62)
cos(01+02)

so scales multiply

so rotations add
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Composing Transformations

ORDER MATTERS!

A A
T{1,1) L R(45)
A
R{45) T{1,1) T{1,1) R{45) @

.. .l

Ta Tb =Tb Ta, but Ra Rb !=Rb Ra and Ta Rb !=Rb Ta

translations commute
* rotations around same axis commute
« rotations around different axes do not commute
* rotations and translations do not commute 38
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Composing Transformations

suppose we want

Fr

i8%
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Composing Transformations

suppose we want Rotate(z,-90)

Fol i

i8%

p'=R(z,-90)p



Composing Transformations

suppose we want Rotate(z,-90) Translate(2,3,0)

Fol i

in% T

P'=R(z,-90)p p'=T(2,30)p
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Composing Transformations

suppose we want Rotate(z,-90) Translate(2,3,0)
Fil i
| } ?; }
Fu 1/
p'=R(z,-90)p p"=T(2,3,0)p

p''=T(2,3,00R(z,-90)p = TRp
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Composing Transformations
p'=TRp

 which direction to read?
* right to left
* interpret operations wrt fixed coordinates
e moving object
* |eft to right

* interpret operations wrt local coordinates
e changing coordinate system
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Composing Transformations
p'=TRp

 which direction to read?
* right to left
* interpret operations wrt fixed coordinates
e moving object
e |left to right OpenGL pipeline ordering!

* interpret operations wrt local coordinates
e changing coordinate system
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Composing Transformations
p'=TRp

« which direction to read?
* right to left
* interpret operations wrt fixed coordinates
e moving object
e |left to right OpenGL pipeline ordering!
* interpret operations wrt local coordinates
e changing coordinate system

* OpenGL updates current matrix with postmultiply
 glTranslatef(2,3,0);
- glRotatef(-90,0,0,1);
- glVertexf(1,1,1);

* specify vector last, in final coordinate system

* first matrix to affect it is specified second-to-last 45



Interpreting Transformations

translate by (-1,0)

L,

(2,1)
@

moving object

(1,1)

L,

intuitive?

changing coordinate system

(1,1)

L,

OpenGL

* same relative position between object and

basis vectors
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Matrix Composition

* matrices are convenient, efficient way to represent series of
transformations

« general purpose representation
* hardware matrix multiply
* matrix multiplication is associative
* p' = (T7(R*(S™P)))
* p'=(T"R*S)"p
* procedure
 correctly order your matrices!
* multiply matrices together
* result is one matrix, multiply vertices by this matrix
« all vertices easily transformed with one matrix multiply
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Rotation About a Point: Moving Object

rotate about

p by 6

4"*2:()6

,Y)

T(x,y,2)R(z,0) T(-x,-y,-2)

translate p
to origin

rotate about
origin

translate p

back

A

/

Sl
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Rotation: Changing Coordinate Systems

* same example: rotation around arbitrary
center
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Rotation: Changing Coordinate Systems

* rotation around arbitrary center

 step 1: translate coordinate system to rotation
center t
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Rotation: Changing Coordinate Systems

* rotation around arbitrary center
* step 2: perform rotation

Nz
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Rotation: Changing Coordinate Systems

* rotation around arbitrary center
» step 3: back to original coordinate system

2
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General Transform Composition

* transformation of geometry into coordinate
system where operation becomes simpler

» typically translate to origin
» perform operation

* transform geometry back to original
coordinate system
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Rotation About an Arbitrary Axis

axis defined by two points

translate point to the origin

rotate to align axis with z-axis (or x or y)
perform rotation

undo aligning rotations

undo translation
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Arbltrary Rotatlon

A (by, by, bz, 1)

o)

> >

X
Z C

* arbitrary rotation: change of basis

* given two orthonormal coordinate systems XYZ and ABC
* A’s location in the XYZ coordinate system is (ay, ay, 8z, 1), ...

* transformation from one to the other is matrix R whose
columns are 4,B,C:

(Cy Cy: Cz: 1)

a b c
a. b. c
R(X) = ay by cy =(a,a,a,l)=A

4 < 4

1
0
0

0 0 0 11

—_ o O O




