
1

How to Succeed in 3rd and 4th
Year Computer Science Classes

Dr. Beth Simon

Science Learning and Teaching Fellow

Computer Science Department

esimon@cs.ubc.ca

Why listen to me?

• PhD in CS

– Computer Architecture: branch predictors

– San Diego Supercomputing Center: USA DoD

• Professor at UC San Diego

– Computing Education Research

• UBC Carl Wieman Science Education Initiative

• My job (and my passion) is to figure out how
students struggle in learning computing and
how to make it work better.

2

Oh yeah? What’s your street cred?

• RateMyProfessor: (1-5, 5 is best)
– Easiness: 3.8

– Helpfulness: 4.8

– Clarity: 4.8

– Overall Quality: 4.8

• Professor Simon is an awesome professor. She is
very enthusiastic and genuinely cares about her
students' learning. She explains the material in a
clear and concise manner and is always well
prepared for class. Overall this prof is awesome
and I hope to get her again.

• UCSD Instructor Evals: 97.93% of students
recommend me as an instructor. (N=14)

What are you going to learn today?
By the end of class today you will be able to…

• Describe some of the expectations that
faculty have of 3rd and 4th year CS students

• List resources and techniques to use in
learning a new language.

• Explain at least 3 strategies for debugging a
large code base.

• Explain how the theory of constructivism
means that lectures are most valuable not
as “content delivery” but as opportunities to
“try out” your learning

3

How many of you have ever raised your
hand and asked a question in a CS class?

How many of you have ever raised your
hand and asked a question in a CS class?

• This is (almost) universally valued by (UBC
CS) faculty.

– They are NOT annoyed, upset, or intending to
blow you off.

– They DO want to know if you are confused.

• Instructors and Students do NOT
experience the content of lecture the same
way[1]

– Instructors “see” more answers in a lecture than
students do.

[1]Hrepic, et.al. Comparing students’ and experts’ understanding of the content of

lecture. Journal of Science Education and Technology, 2007. V16 No 3.

4

You tell me…

• Why do you not raise your hand and ask a
question in class?

Repeat after me:

• “I have an question about that matrix on the
right – why are we using that again?”

5

Repeat after me:

• “Wait, I didn’t quite get that – could you
explain that again?”

By the end of your 3rd year in Computer
Science you should be able to

• Learn a new programming language
– Without taking a class on it

• Engage advanced debugging skills for large-ish
code bases
– And be able to describe and defend

• Utilize with proficiency software development
support systems
– Version control systems

• e.g. svn

– Project management systems
• e.g. Eclipse

6

The Great Debate:

• CS students should not be
expected to learn a new
language on their own.

• CS students should be able to
learn a new language on their
own.

Resources and Techniques to Learn a New
Language

• Don’t sit down and read a textbook
– Learn in context, solve a problem you know how to solve in
another language (arrays, loops, parameter passing) to figure
out basic behaviors

• Use web searches and look at sample code
• Try to identify how it differs from the language you know (Java)
• Create a forum to share these ideas with yoru friends to “check
them out”
– Ask someone if you disagree

• Some “textbooks” might be good:
– C for Java programmers

• Recognize that you’ll need to “give time” to the new language

– Start assignments earlier

• Practice being a professional

7

Things I want to know when I learn a new
language

• How do I print? (key for basic playing around and debugging)

• How are variables “stored”?

– Like primitive types or reference types?

• How are parameters passed?

– By Value? (Java but with objects the value is a reference C++)

– By Reference? (C++ if you use *)

• What’s the scope of a variable name (same)

• What are my available looping structures (same/mostly)

• How do data types differ (boolean, esp).

• What do all the OO-isms “look like”

• What built in libraries can I use to make my life easier?

Advice from someone who really knows:

• Khawaja Shams (ex-student works at NASA Jet
Propulstion Lab in Pasadena, CA, USA)

• From chat:
– i feel the best way to learn a language is to use it

– recently, i had to learn actionscript for a project at
work...and i needed to know more than just the basics

– what worked for me was actually opening an IDE and
starting to type and look for solutions online as i
encountered problems

– IDEs are a great tool for learning a new language btw, i
think many underestimate how valuable of a teacher an
IDE can be… things like auto complete...suggestions,
warnings, etc...are great

8

Debugging Done Right

• Debugging as the Scientific Method

• Large Systems

The Scientific Method Applied to
Debugging

• 1) Observe/describe the phenomenon

• 2) Form an educated guess (hypothesis)
(may involve doing background research)
about the cause of the phenomenon and
make predictions based on hypothesis

• 3) Test your hypothesis with an
experiment(s)

• 4) Check and interpret the results

• 5) Report results to the community

9

• 1) Phenom: x and y
don’t change. DOH.

• 2) Educated guess

– 1: Function not
executed?

– 2: Parameter values not
“coming back” to main
program

• 3) Experiment?

• 4) How
check/interpret?

int foo(int y, int x)

{

y++;

x--;

}

int main()

{

int x, y = 0;

foo(x, y);

cout << “x = “ << x;

cout << “y = “ << y;

}

The step that will help you most

• Report results to the community.

– Keep a personal bug log with the bug, description
of error or how it exhibited itself, thoughts,
understanding and fix.

– Better yet, make a wiki with your friends and
QUESTION each other about the bugs they
report.

• http://www.wikidot.com/

• UBC wiki: brian.lamb@ubc.ca

10

Debugging Large Systems

• Locating the bug

– Advanced Debuggers

– Binary Search

• Crash or incorrect value/output

– Working backwards/Working forwards

– Explain it in plain English

• Tell it to your cat, your friend (imaginary or not)

– Separate known facts from “assumptions”

Utilizing support systems

• SVN (or CVS) is your FRIEND

– By FAR the most highly stated CRITICAL tool by
students in their first “large programming” course.

– Take snapshots of your code. About to:

• Write a new method/function

• Add a new class

• Debug something
– The most common problem of novice programmers is inserting
new bugs when they are trying to fix other ones.

– ROLL BACK

• After that long night where you should have gone to bed…

11

Utilizing Support Systems

• Project Management Systems – Eclipse
– Software development is not just about code

– Planning/Design
• Solve the RIGHT thing

• What pieces should you build first

• How will those pieces fit together to solve your
problem?

– Communication and Documentation

• Among team members

• So your code can be understood by others (or by
you after 2 days)

General advice (from the literature) on
learning effectively in class

• At the beginning of class, know what you expect to be learning.

– If you don’t know what you are expected to learn…
• How will you watch for it?

• How will you know if you didn’t “get it”?

• Don’t rely on your notes for “fact”

– People can’t take good notes on material they are not yet
familiar with

– If you must, cross-compare with others’ notes

• Always be “engaged”

– You only learn by “constructing” new knowledge on top of things
you already know
• Think about how this new thing relates to something you know

• Think about the scenarios you would use it or not use it

• Ask yourself “why do I want to know this”?

12

Advice on learning from lecture in THIS
class

• In this class the lectures will warm you up for the book reading

– But the “recommended text” is a good warm up for lectures
(IMHO)

• Lectures will often have demos

– These you need to pay attention to since the professor will
model “how” she looks at problems and “how she thinks” about
going about solving problems
• THIS is what you need to know

• Ask her questions about WHY one would ask that questions or try
that parameter value

• Try to PREDICT what would happen if you changed some value

• A lot of your grade comes from the practical application of
things in projects

– You will help yourself on that application if you are focused on
the “way the professor thinks” about problems or demos in
class

Questions/Concerns/Comments?

13

A word about lectures and medieval times

• Lecture: It’s a large part of what you pay for

– Common: Highlight material in book, discuss
complex issues, provide extra examples

• Why do we have the “lecture” format?

– Why does someone stand at the front and tell you
things?

– Why do you take “notes” on what they say?

14

The printing press
The web

• You don’t have the trust the monk!

– Read it and analyze for YOURSELF!

– If I rephrase it for you, what purpose does that serve?

• Don’t memorize ANYTHING “just because” for
this class

– You can always look up things in the real world

– Some things you will COME to know, because it allows you
to do things faster

• Avoid bulimic learning

– Focus on why or when to apply

Why ask why?
(or why just “giving” the answer isn’t enough)

• “[Previously] It was not the general rule for
educational systems to train people to think
and read critically, to express themselves
clearly and persuasively, to solve complex
problems in science and mathematics. Now,
at the end of the [last] century, these
aspects of high literacy are required of
almost everyone in order to successfully
negotiate the complexities of contemporary
life.”

How People Learn: Brain, Mind, Experience and School.

National Research Council, Bransford, et. al.

15

Memorization:
It’s not what’s for breakfast anymore

• As Nobel laureate Herbert Simon wisely stated,
the meaning of “knowing” has shifted from being
able to remember and repeat information to being
able to find and use it (Simon, 1996).
– More than ever, the sheer magnitude of human knowledge
renders its coverage by education an impossibility;
rather, the goal of education is better conceived as
helping students develop the intellectual tools and
learning strategies needed to acquire the knowledge that
allows people to think productively about history, science
and technology, social phenomena, mathematics, and the
arts.

– Fundamental understanding about subjects, including how
to frame and ask meaningful questions about various
subject areas, contributes to individuals’ more basic
understanding of principles of learning that can assist
them in becoming self-sustaining, lifelong learners.

How People Learn: Brain, Mind, Experience and School.

National Research Council, Bransford, et. al.

Don’t ask me to do it, tell me HOW to do it!

• Metacognition refers to people’s abilities to
predict their performances on various tasks (e.g.,
how well they will be able to remember various
stimuli) and to monitor their current levels of
mastery and understanding (e.g., Brown, 1975;
Flavell, 1973).

• Teaching practices congruent with a metacognitive
approach to learning include those that focus on
sense-making, self-assessment, and reflection on
what worked and what needs improving.

• These practices have been shown to increase the
degree to which students transfer their learning
to new settings and events (e.g., Palincsar and
Brown, 1984; Scardamalia et al., 1984; Schoenfeld,
1983, 1985, 1991).

How People Learn: Brain, Mind, Experience and School.

National Research Council, Bransford, et. al.

16

Don’t waste time having ME do things,
you SHOW ME how to do things

• Formative assessments—ongoing assessments
designed to make students’ thinking visible to
both teachers and students—are essential.

• They permit the teacher to grasp the students’
preconceptions, understand where the students
are in the “developmental corridor” from informal
to formal thinking, and design instruction
accordingly.

• In the assessment-centered classroom
environment, formative assessments help both
teachers and students monitor progress.

How People Learn: Brain, Mind, Experience and School.

National Research Council, Bransford, et. al.

