
CPSC 314, Project 3: Raytracer

Out: Wed 3 Mar 2008
Due: Thu 20 Mar 2008 6pm PST

Value: 8% of final grade
Points: 100

In this assignment you will implement a simple raytracer that supports spheres and planes. The raytracer should cast primary
rays into the scene, which spawn secondary reflection and shadow rays.
Up to three extra credit points are available for extending your program to support refraction, or for designing your own scene.

Template
Download from http://www.ugrad.cs.ubc.ca/∼cs314/Vjan2008/raytracer template.tar.gz and use
this command to unpack it: gunzip < raytracer template.tar.gz | tar xvf -. You will see three main sub-
directories, src, include, and demo. The demo directory contains scene descriptions in the simple .ray format, describing
the following kinds of objects: Resolution, Camera, Material, Sphere, Plane, and PointLight. The comments in those files de-
scribe the format. The directory also contains reference images created by the solution code.
You will be making additions to three of the template code files in the src directory: FileParser.cpp, Primitives.cpp,
and Raytracer.cpp. You do not need to make any changes to the fourth source file, main.cpp.
The provided Makefile should run on the lab Linux machines. You may also find the included VisualStudio 7.1 (2003) files
useful, but it’s up to you to get things working if you want to develop outside the lab.
The README.txt contains instructions for compiling and running your raytracer. The raytracer binary takes two optional
arguments: the name of the scene description, and the name of the output PPM image file. The defaults are demo/testscene.ray
and demo/testscene.ppm. The output of the program is two image files, a color image and a black-and-white depth map
image that you might find useful for debugging. The name of the depth map image file is filename depth.ppm, where
filename.ppm is the specified output image file.

Requirements
• 14 pts Complete the parser in FileParser::parse. The template code includes PointLight parsing as an example.

You need to implement parsing for for Material, Sphere, Plane, Camera, and Resolution. After you have implemented
these function, uncomment the cout lines that report on parsing results (allowing you, and the grader, to check that the
parsing has occurred correctly).

• 14 pts Implement Sphere::intersect

• 14 pts Implement Plane::intersect

• 16 pts Implement the missing part of Raytracer::shade that does a lighting calculation to find the color at a point.
You should calculate the ambient, diffuse, specular, and emission terms.

• 14 pts Implement the shadow ray calculation in Raytracer::shade.

• 14 pts Implement the secondary ray recursion for reflection in Raytracer::traceRay

• 14 pts Modify the orthographic camera code in Raytracer::raytraceScene so that it does perspective projection
when generating the rays into the scene.

Extra Credit [3 pts]
• (1 pt): Design an interesting scene.

• (2 pts): Add support for refraction.

The comments in the template code above each section where are you required to add code contain the details of the spec-
ification. They also contain many hints. The recommended order of implementation is exactly the order we list the items
above.

1



Handin/Grading/Documentation
The grading, required documentation, and handin will be the same as with the previous projects, with the following exceptions.
First, use the command ’handin cs314 p3’. Do submit the images made by your program for the two example scenes provided.
If you design extra-credit scenes, also submit the .ray file for them.
As before, the main requirement for style is to avoid producing near-duplicate code.

2


