CPSC 314
Midterm Solutions

March 2008
1. a)(2,4,6) (2 pts).

b) True. (2 pts).

¢) Solution given by the following matrix (4 pts):

172 0 0 -2
0 1 0 1
0 0 1 -1
0 0 0 1

1 pt deduction per incorrect entry or
2 pt deduction for wrong translation/scale triple.

d) False. This approach won't work for concave polygons. (2 pts).
e) False. Matrix multiplication is not commutative in the general case. (2 pts).
2. a)A(2,-1.5) B(-1,-4) (5 pts).

b) The solution is (8 pts):

Right-multiplying this matrix by (2, -1.5, 1) gives the solution (-1,-4,1).
Note that the goal is not to reconstruct a series of basic transformations.

1 pt deduction if there was no verification step
2 pt deduction for incorrect columns in the matrix
3 pts awarded for trying to express vectors I, J4 in terms of I, Jg.

¢) The solution is (8 pts):
glTranslate(4, -1, 0);
glScale(1, 1,2);
glRotate(90, 0, 0, 1);

2 pt deduction for wrong order of rotate and translate.
1 pt deduction for scale by zero.

3. a) AEF G. (7 pts).

3 pts awarded if the multiplications were correct but the graph walk was
backwards.

b) G F' E'B CD. (7 pts).

3 pts awarded if the multiplications were correct but the graph walk was
backwards.

4. a) Figure should look as follows (2 pts):

Drawing should depict a cube with two vanishing points or one obvious axis of
which edges are parallel.

Explanation: align image plane with aforementioned parallel axis (2 pts).
b) Observe that...

xX'=x—(a*y)/b (3 pts awarded)
y'=0 (1 ptawarded)

The required matrix is... (2 pts)

1 —alb 0
0 0 0
0 0 1

2 pts awarded for good system of equations but no final answer.

5. a) (x—C)+(y—C,’=R" (3pts)
1 pt deduction if C,/C, are missing.
b) x=C,+rcos(t), y=C +rcos(t) (3 pts)

1 pt deduction if C,/C, are missing.

c¢) The best approach to this question is to maintain integers representing the row
and column and to increment either one (just row) or both (row and column)
based on a decision variable, e.g... (12 pts)

Floating point form...

X -R
y 0
d = f(x+0.5, y-1)
SetPixel (Cx + x, Cy + V)
while((y > —-sgrt(2)*R/2)&&(x < —-sqgrt(2)*R/2))
if (d < 0){ //in circle
d=f(x + 0.5, y - 2) // update the decision variable
}else{ //outside
d=f(x + 1.5, y - 2) // update the decision variable
X++

}

y--

SetPixel (Cx + x,Cy + y) // draw the new point
}

Optimized integer form...

X -R
% 0
d 1 - R //solve f(x+0.5,y-1) above
SetPixel (Cx + x, Cy + V)
while ((y > —-sgrt(2)*R/2)&&(x < —-sgrt(2)*R/2))
if (d < 0){ //in circle
d = -2*y-3 // update the decision variable
}else{ //outside
d=2* (x -—vy) -1 // update the decision variable
X++

}

y--

SetPixel (Cx + x,Cy + y) // draw the new point
}

A more complete explanation of how this is derived can be found at:
http://www.ugrad.cs.ubc.ca/~cs314/Vsep2005/quiz2/q2_sol.pdf

Other correct approaches are possible. Part marks were awarded based on the use
of a decision variable, correct initalization, looping, feasibility/efficiency of the
solution, level of detail of the solution, and diagrams.

d) The general idea is simply to loop over a bounding box surrounding the circle
and evaluate the circle function at each point to see if it is inside or not:

Cy - R
Cx — R

y
X

while(y < Cy + R)
while(x < Cx + R) {
if ((x = Cx)"2 + (y - Cy)"2 < R"2)
SetPixel (x, V)

http://www.ugrad.cs.ubc.ca/~cs314/Vsep2005/quiz2/q2_sol.pdf

X++

}
y++

}

Points were awarded for correct looping, initialization, and function evaluation.
Alternative algorithms were given part marks based on how reasonable and how
well-specified they are. Points awarded roughly break down as follows:

Solution equivalent to what is shown above 10 pts
Well-specified, feasible solution 6 pts or more
Poorly specified or somewhat infeasible solution 4 pts or less

e) In contrast with (d), the idea with (e) is to fill in the circle row-by-row and
avoid evaluating the circle function at each step. Schemes involving booleans
keeping track of whether or not the current point is inside/outside the circle are
not necessary as with general polygons (where edges can cross). The best solution
is to solve for bounding X values at each row and fill in the pixels between them,

e.g.

for(int row = Cy - R; row <= Cy + R; row++) {
int minX/maxX = Cx +/- sqgrt(r*2 - y*2) //solve for x

for(int col = minX; col <= maxX; col++) {
SetPixel(x, vy)
}
}

Again, there were many possible solutions. Points were awarded in a way similar
to (d). Presenting exactly the same algorithm for both (d) and (e) resulted in
deductions.

