University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Textures |

Week 9, Wed Mar 14
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007

Reading for Today and Next Time

- FCG Chap 11 Texture Mapping
- except 11.8

- RB Chap Texture Mapping
- FCG Sect 16.6 Procedural Techniques
- FCG Sect 16.7 Groups of Objects

News

* Q3 specular color should be (1,1,0)

* P3: bug in sample implementation fixed

* new reference images and sample binaries
posted

* no change to template

Correction: HSV and RGB

« HSV/HSI conversion from RGB
* not expressible in matrix

_R+G+B . [min®G.B)
3 I/
;[<R—G>+<R—B>]

J(R-G)* +(R-B)G - B)

/

-1
H = cos

Review: Z-Buffer Algorithm

* augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
* at frame beginning, initialize all pixel depths

to

* when rasterizing, interpolate depth (£)
across polygon

» check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

« don’t write pixel if its Z value is more distant
than the Z value already stored there

Clarification/Review: Depth Test Precision

» reminder: projective transformation maps
eye-space z to generic z-range (NDC)

T 2n 0 r+l 0 X,
r—1 r—1
Vy o 2n t+b 0 V.
= t—b t—b '
Zy 0 0 —;f+n) -2 fn Z
—n —n
"Wl o o _1 o |L"E
_ _ Zy _f+n 2fm w,

2 = (f+n)Z . 2 fn = +

W, W, =—2 _ —
fon BTt E Wy n f n

Backface Culling

Back-Face Culling

 on the surface of a "solid" object, polygons
whose normals point away from the
camera are always occluded:

>

note: backface culling
alone doesn’t solve the

XX
hidden-surface problem!

— |

Back-Face Culling

 not rendering backfacing polygons improves
performance

* by how much?

* reduces by about half the number of polygons
to be considered for each pixel

 optimization when appropriate

Back-face Culling: VCS

first idea:
cultif N, <0

sometimes
misses polygons that
should be culled

10

VCS

NDCS

eye

Back-face Culling: NDCS

b/
A\ bz works to cullif N, >0

11

Back-Face Culling: Manifolds

* most objects in scene are typically “solid”

* specifically: orientable closed manifolds

* orientable: must have two distinct sides
» cannot self-intersect

* a sphere is orientable since has
two sides, 'inside' and 'outside’.

* a Mobius strip or a Klein bottle is
not orientable

* closed: cannot “walk” from one
side to the other

* sphere is closed manifold
 plane is not

Back-Face Culling: Manifolds

* most objects in scene are typically “solid”

* specifically: orientable closed manifolds
- manifold: local neighborhood of all points isomorphic to
disc
* boundary partitions space into interior & exterior

“’ Yes No
08 : 2 @D
o d o >

p

1

>

13

Backface Culling: Manifolds

» examples of manifold objects:
* sphere
* torus
+ well-formed CAD part

- examples of non-manifold objects; T mmmEs
* a single polygon

a terrain or height field

polyhedron w/ missing face

anything with cracks or holes in boundary i

one-polygon thick lampshade

14

Invisible Primitives

* why might a polygon be invisible?
 polygon outside the field of view / frustum
» solved by clipping
 polygon is backfacing
* solved by backface culling

 polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

15

Texturing

16

Rendering Pipeline

Geometry Processing

Geometry | J[Model/View| IPerspective

Database Transform. Lighting Transform. Allprplie

Frame-

Texturing | Test lBlending I buffer

Rasterization Fragment Processing

17

Texture Mapping

* real life objects have
nonuniform colors,
normals

* to generate realistic
objects, reproduce
coloring & normal
variations = texture

* can often replace
complex geometric
details

18

Texture Mapping

* Introduced to increase realism
» lighting/shading models not enough
* hide geometric simplicity
* images convey illusion of geometry
* map a brick wall texture on a flat polygon
* create bumpy effect on surface
» associate 2D information with 3D surface

* point on surface corresponds to a point in
texture

* “paint” image onto polygon

19

Color Texture Mapping

 define color (RGB) for each point on object
surface

* two approaches
* surface texture map
* volumetric texture

Texture Coordinates

* texture image: 2D array of color values (texels)
 assigning texture coordinates (s,t) at vertex with
object coordinates (x,y,z,w)
* use interpolated (s,t) for texel lookup at each pixel

* use value to modify a polygon’s color
« or other surface property

 specified by programmer or artist giTexCoord2f (s,t)
glVertexf (x,y,z,w)

21

Texture Mapping Example

22

Example Texture Map

,[X

Ls glTexCoord2d(1,1); h z
glVertex3d (0, 2, 2);

ool M \ WA N

(0, 0) HU 0) / \\

ngeXCoord2d(0,O),
glVertex3d (0, -2, -2);
Texture Object Mapped Texture
23

(0,0)

Fractional Texture Coordinates

texture
image

\
(1,0) (0,0) (-25,0)

24

Texture Lookup: Tiling and Clamping

* what if s or t is outside the interval [0...1]?

* multiple choices

* use fractional part of texture coordinates

» cyclic repetition of texture to tile whole surface
glTexParameteri(..., GL_ TEXTURE WRAP_ S, GL REPEAT,
GL TEXTURE WRAP T, GL REPEAT, ...)

 clamp every component to range [0...1]

* re-use color values from texture image border

glTexParameteri(..., GL_ TEXTURE WRAP_S, GL CLAMP,
GL TEXTURE WRAP T, GL CLAMP, ...)

25

Tiled Texture Map

glTexCoord2d(1, 1);

glVertex3d (x, vy, z); T

=

(0,0) Object ,1) Mapped Texture

Texture

glTexCoord2d(4, 4);
glVertex3d (x, vy, z);

Tex

(0,4) Mapped Texture

Demo

 Nate Robbins tutors
e texture

27

Texture Coordinate Transformation

* motivation

* change scale, orientation of texture on an object
e approach

» texture matrix stack

* transforms specified (or generated) tex coords
glMatrixMode (GL TEXTURE) ;

glLoadIdentity () ;
glRotate () ;

- more flexible than changing (s,t) coordinates
* [demo]

28

Texture Functions

* once have value from the texture map, can:

- directly use as surface color: GL REPLACE
 throw away old color, lose lighting effects

- modulate surface color: GL MODULATE
« multiply old color by new value, keep lighting info
* texturing happens after lighting, not relit

* use as surface color, modulate alpha: GL DECAL
* like replace, but supports texture transparency

* blend surface color with another: GL BLEND
* new value controls which of 2 colors to use
* indirection, new value not used directly for coloring

* specify with g1TexEnvi (GL. TEXTURE ENV,
GL TEXTURE ENV MODE, <mode>)

« [demo]

29

Texture Pipeline

(x, Y, z)
Object position
(-2.3,7.1,17.7)
(s, t) (s’, t)
Texel space Texel color
Parameter space —> Transformed —— (81, 74) — (0.9,0.8,0.7)
(0.32, 0.29) parameter space ’ bt hd

(0.52, 0.49)

Object color
(0.5,0.5,0.5)

» Final color
(0.45,0.4,0.35)

30

Texture Objects and Binding

* texture object

« an OpenGL data type that keeps textures resident in memory
and provides identifiers to easily access them

 provides efficiency gains over having to repeatedly load and
reload a texture

* you can prioritize textures to keep in memory

* OpenGL uses least recently used (LRU) if no priority is
assigned

* texture binding
* which texture to use right now
« switch between preloaded textures

31

Basic OpenGL Texturing

create a texture object and fill it with texture data:
- glGenTextures (num, &indices) t0 get identifiers for the objects
- glBindTexture (GL TEXTURE 2D, identifier) to bind
- following texture commands refer to the bound texture

* glTexParameteri (GL TEXTURE 2D, .., ..) tospecify
parameters for use when applying the texture
* glTexImage2D (GL TEXTURE 2D, ...) to specify the texture data

(the image itself)
enable texturing: glEnable (GL TEXTURE 2D)

state how the texture will be used:
e glTexEnvft (..)
specify texture coordinates for the polygon:

* use glTexCoord2f (s, t) before each vertex:
e glTexCoord2f£(0,0); glVertex3f(x,vy,2z);

32

Low-Level Details

* large range of functions for controlling layout of texture data

- state how the data in your image is arranged

° e.0..glbPixelStorei (GL UNPACK ALIGNMENT, 1) tells
OpenGL not to skip bytes at the end of a row

* you must state how you want the texture to be put in memory:
how many bits per “pixel”, which channels, ...

 textures must be square and size a power of 2
* common sizes are 32x32, 64x64, 256x256

« smaller uses less memory, and there is a finite amount of
texture memory on graphics cards

« ok to use texture template sample code for project 4
* http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

33

Texture Mapping

* texture coordinates

* specified at vertices
glTexCoord2f (s, t) ;

glVertexf (x,y,2);

* interpolated across triangle (like R,G,B,Z)
e ...well not quite!

34

Texture Mapping

* texture coordinate interpolation
» perspective foreshortening problem

35

Interpolation: Screen vs. World Space

* screen space interpolation incorrect

 problem ignored with shading, but artifacts
more visible with texturing | Po(x.y.2) |

36

Texture Coordinate Interpolation

» perspective correct interpolation
o, B,y
* barycentric coordinates of a point P in a triangle
* S0, s1,s2:
* texture coordinates of vertices
« w0, wi,w2:

* homogeneous coordinates of vertices

(s1,t1)
(x1,y1,z1,w1)

(s2,t2) (f(

(x2,y2,z2,w2) (s0,t0)
(x0,y0,z0,w0)

oSy /wy s /wty s, /w,

o/ w,+p/w +y/w,

37

Reconstruction

Rotx Roty DT i (m|

2 [|- 3l

(image courtesy of Kiriakos Kutulakos, U Rochester)

38

Reconstruction

* how to deal with:

* pixels that are much larger than texels?

- apply filtering, “averaging”

* pixels that are much smaller t
* Interpolate

nan texels ?

39

MIPmapping

use “image pyramid” to precompute
averaged versions of the texture

Without MIP-mapping

store whole pyramid in By
single block of memory

With MIP-mapping’

MIPmaps

multum in parvo -- many things in a small place

« prespecify a series of prefiltered texture maps of decreasing
resolutions

* requires more texture storage

 avoid shimmering and flashing as objects move
gluBuildZ2DMipmaps

« automatically constructs a family of textures from original
texture size down to 1x1

without

41

MIPmap storage

 only 1/3 more space required

42

Texture Parameters

* In addition to color can control other
material/object properties

» surface normal (bump mapping)
» reflected color (environment mapping)

43

Bump Mapping: Normals As Texture

* object surface often not smooth — to recreate correctly
need complex geometry model

 can control shape “effect” by locally perturbing surface
normal

* random perturbation
» directional change over region

Bump Mapping

bt ow

Original surface

B(u)

| W A bump map

Bump Mapping

0'(u)

Lengthening or shortening
(ONu) using B(u)

N'(u)

The vectors to the

o

‘new’ surface

Embossing

 at transitions
» rotate point’s surface normal by or- _

47

Displacement Mapping
* bump mapping gets 5\&
silhouettes wrong

- shadows wrong too

* change surface
geometry instead
* only recently

available with
realtime graphics

* need to subdivide
surface

Environment Mapping

» cheap way to achieve reflective effect
* generate image of surrounding
* map to object as texture

49

Environment Mapping

* used to model object that reflects
surrounding textures to the eye

* movie example: cyborg in Terminator 2
* different approaches

* sphere, cube most popular
* OpenGL support

- GL_SPHERE MAP, GL CUBE MAP

 others possible too

50

Sphere Mapping

* texture is distorted fish-eye view
* point camera at mirrored sphere

* spherical texture mapping creates texture coordinates that
correctly index into this texture map

Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions, facing
out from origin

Cube Mapping

53

Cube Mapping

 direction of reflection vector r selects the face of the
cube to be indexed

» co-ordinate with largest magnitude
* e.g., the vector (-0.2, 0.5, -0.84) selects the —Z face

* remaining two coordinates (normalized by the 3
coordinate) selects the pixel from the face.

* e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

» difficulty in interpolating across faces

54

Review: Texture Objects and Binding

* texture objects
» texture management: switch with bind, not reloading
 can prioritize textures to keep in memory

* Q: what happens to textures kicked out of memory?

 A: resident memory (on graphics card) vs.
nonresident (on CPU)

+ details hidden from developers by OpenGL

55

Volumetric Texture

 define texture pattern over 3D
domain - 3D space containing
the object

* texture function can be
digitized or procedural

- for each point on object
compute texture from point
location in space

« common for natural
material/irregular textures
(stone, wood,etc...)

Marble

Volumetric Texture Principles

3D function p

Vo =pxy,2)
texture space — 3D space that holds the
texture (discrete or continuous)

rendering: for each rendered point P(x,y,z)
compute p(x,y,z)

volumetric texture mapping function/space
transformed with objects

58

