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Reading for This Time

• FCG Chap 12 Graphics Pipeline
• only 12.1-12.4
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News

• Project 3 update
• Linux executable reposted

• template update
• download package again OR

• just change line 31 of src/main.cpp from
int resolution[2];
to
int resolution[] = {100,100};
OR

• implement resolution parsing
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Review: Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments
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Review: Sutherland-Hodgeman Clipping

• for each viewport edge
• clip the polygon against the edge equation for new vertex list

• after doing all edges, the polygon is fully clipped

• for each polygon vertex
• decide what to do based on 4 possibilities

• is vertex inside or outside?

• is previous vertex inside or outside?
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Review: Sutherland-Hodgeman Clipping

• edge from p[i-1] to p[i] has four cases
• decide what to add to output vertex list
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Review: Painter’s Algorithm

• draw objects from back to front

• problems: no valid visibility order for
• intersecting polygons

• cycles of non-intersecting polygons possible
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Review: BSP Trees

• preprocess: create binary tree
• recursive spatial partition

• viewpoint independent
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Review: BSP Trees
• runtime: correctly traversing this tree enumerates

objects from back to front
• viewpoint dependent: check which side of plane

viewpoint is on at each node

• draw far, draw object in question,
draw near
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Hidden Surface Removal II
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BSP Demo

• useful demo:
http://symbolcraft.com/graphics/bsp
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Clarification: BSP Demo

• order of insertion can affect half-plane extent
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Summary: BSP Trees

• pros:
• simple, elegant scheme

• correct version of painter’s algorithm back-to-front
rendering approach

• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort

• splitting increases polygon count: O(n2) worst-case

• computationally intense preprocessing stage restricts
algorithm to static scenes
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The Z-Buffer Algorithm (mid-70’s)

• BSP trees proposed when memory was
expensive
• first 512x512 framebuffer was >$50,000!

• Ed Catmull proposed a radical new
approach called z-buffering

• the big idea:
• resolve visibility independently at each

pixel
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The Z-Buffer Algorithm

• we know how to rasterize polygons into an
image discretized into pixels:
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The Z-Buffer Algorithm

• what happens if multiple primitives occupy
the same pixel on the screen?
• which is allowed to paint the pixel?
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The Z-Buffer Algorithm

• idea: retain depth after projection transform
• each vertex maintains z coordinate

• relative to eye point

• can do this with canonical viewing volumes
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The Z-Buffer Algorithm

• augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
• at frame beginning, initialize all pixel depths

to ∞
• when rasterizing, interpolate depth (Z)

across polygon
• check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
• don’t write pixel if its Z value is more distant

than the Z value already stored there
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Interpolating Z

• barycentric coordinates
• interpolate Z like other

planar parameters
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Z-Buffer

• store (r,g,b,z) for each pixel
• typically 8+8+8+24 bits, can be more

for all i,j {for all i,j {
 Depth[i,j] = MAX_DEPTH Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR Image[i,j] = BACKGROUND_COLOUR
}}
for all polygons P {for all polygons P {
  for all pixels in P {  for all pixels in P {
    if (Z_pixel < Depth[i,j]) {    if (Z_pixel < Depth[i,j]) {
      Image[i,j] = C_pixel      Image[i,j] = C_pixel
      Depth[i,j] = Z_pixel      Depth[i,j] = Z_pixel
    }    }
  }  }
}}
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Depth Test Precision

• reminder: projective transformation maps
eye-space z to generic z-range (NDC)

• simple example:

• thus:
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Depth Test Precision

• therefore, depth-buffer essentially stores 1/z,
rather than z!

• issue with integer depth buffers
• high precision for near objects

• low precision for far objects
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zzNDCNDC
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Depth Test Precision

• low precision can lead to depth fighting for far objects
• two different depths in eye space get mapped to same

depth in framebuffer

• which object “wins” depends on drawing order and scan-
conversion

• gets worse for larger ratios f:n
• rule of thumb: f:n < 1000 for 24 bit depth buffer

• with 16 bits cannot discern millimeter differences in
objects at 1 km distance

• demo:
sjbaker.org/steve/omniv/love_your_z_buffer.html
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 Z-Buffer Algorithm Questions

• how much memory does the Z-buffer use?

• does the image rendered depend on the
drawing order?

• does the time to render the image depend on
the drawing order?

• how does Z-buffer load scale with visible
polygons?  with framebuffer resolution?
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Z-Buffer Pros

• simple!!!

• easy to implement in hardware
• hardware support in all graphics cards today

• polygons can be processed in arbitrary order

• easily handles polygon interpenetration

• enables deferred shading
• rasterize shading parameters (e.g., surface

normal) and only shade final visible fragments
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Z-Buffer Cons

• poor for scenes with high depth complexity
• need to render all polygons, even if

most are invisible

• shared edges are handled inconsistently
• ordering dependent

eyeeye
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Z-Buffer Cons

• requires lots of memory
• (e.g. 1280x1024x32 bits)

• requires fast memory
• Read-Modify-Write in inner loop

• hard to simulate translucent polygons
• we throw away color of polygons behind

closest one
• works if polygons ordered back-to-front

• extra work throws away much of the speed
advantage
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Hidden Surface Removal

• two kinds of visibility algorithms
• object space methods

• image space methods
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Object Space Algorithms

• determine visibility on object or polygon level
• using camera coordinates

• resolution independent
• explicitly compute visible portions of polygons

• early in pipeline
• after clipping

• requires depth-sorting
• painter’s algorithm

• BSP trees
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Image Space Algorithms

• perform visibility test for in screen coordinates
• limited to resolution of display

• Z-buffer: check every pixel independently

• performed late in rendering pipeline
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Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatefglRotatef((thth,x,y,z),x,y,z)
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)
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Rendering Pipeline

Geometry
Database
Geometry
Database

Model/View
Transform.
Model/View
Transform. LightingLighting Perspective

Transform.
Perspective
Transform. ClippingClipping

Scan
Conversion

Scan
Conversion

Depth
Test

Depth
Test

TexturingTexturing BlendingBlending
Frame-
buffer

Frame-
buffer

OCSOCS

object

WCSWCS
world

VCSVCS
viewing

CCSCCS

clipping

NDCSNDCS

normalized
device

SCSSCS
screen

(2D)DCSDCS
device

(3D)

(4D)

/w/w 
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Backface Culling
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Back-Face Culling

• on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!
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Back-Face Culling

• not rendering backfacing polygons improves
performance
• by how much?

• reduces by about half the number of polygons
to  be considered for each pixel

• optimization when appropriate
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Back-Face Culling

• most objects in scene are typically “solid”

• rigorously: orientable closed manifolds
• orientable: must have two distinct sides

• cannot self-intersect

• a sphere is orientable since has
two sides, 'inside' and 'outside'.

• a Mobius strip or a Klein bottle is
not orientable

• closed: cannot “walk” from one
side to the other

• sphere is closed manifold

• plane is not
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Back-Face Culling

Yes No

• most objects in scene are typically “solid”

• rigorously: orientable closed manifolds
• manifold: local neighborhood of all points isomorphic to

disc

• boundary partitions space into interior & exterior
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Manifold

• examples of manifold objects:
• sphere

• torus

• well-formed
CAD part
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Back-Face Culling

• examples of non-manifold objects:
• a single polygon

• a terrain or height field

• polyhedron w/ missing face

• anything with cracks or holes in boundary

• one-polygon thick lampshade
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Back-face Culling: VCS

yy

zz

first idea:first idea:
cull if cull if 0<ZN

sometimessometimes
misses polygons thatmisses polygons that
should be culledshould be culledeyeeye
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Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz
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Invisible Primitives

• why might a polygon be invisible?
• polygon outside the field of view / frustum

• solved by clipping

• polygon is backfacing
• solved by backface culling

• polygon is occluded by object(s) nearer the viewpoint
• solved by hidden surface removal


