
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Hidden Surfaces II

Week 9, Mon Mar 12

2

Reading for This Time

• FCG Chap 12 Graphics Pipeline
• only 12.1-12.4

3

News

• Project 3 update
• Linux executable reposted

• template update
• download package again OR

• just change line 31 of src/main.cpp from
int resolution[2];
to
int resolution[] = {100,100};
OR

• implement resolution parsing

4

Review: Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments

5

Review: Sutherland-Hodgeman Clipping

• for each viewport edge
• clip the polygon against the edge equation for new vertex list

• after doing all edges, the polygon is fully clipped

• for each polygon vertex
• decide what to do based on 4 possibilities

• is vertex inside or outside?

• is previous vertex inside or outside?

6

Review: Sutherland-Hodgeman Clipping

• edge from p[i-1] to p[i] has four cases
• decide what to add to output vertex list

inside outside

p[i]

p[i] output

inside outside

no output

inside outside

i output

inside outside

i output
p[i] output

p[i]

p[i] p[i]p[i-1]

p[i-1] p[i-1]

p[i-1]

7

Review: Painter’s Algorithm

• draw objects from back to front

• problems: no valid visibility order for
• intersecting polygons

• cycles of non-intersecting polygons possible

8

Review: BSP Trees

• preprocess: create binary tree
• recursive spatial partition

• viewpoint independent

9

Review: BSP Trees
• runtime: correctly traversing this tree enumerates

objects from back to front
• viewpoint dependent: check which side of plane

viewpoint is on at each node

• draw far, draw object in question,
draw near

1

2

3

4 5

6

7

8

9

F N

FN

FN

N F

NF

1 2

34

5

6

78

9

FN

FN

FN

10

Hidden Surface Removal II

11

BSP Demo

• useful demo:
http://symbolcraft.com/graphics/bsp

12

Clarification: BSP Demo

• order of insertion can affect half-plane extent

13

Summary: BSP Trees

• pros:
• simple, elegant scheme

• correct version of painter’s algorithm back-to-front
rendering approach

• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort

• splitting increases polygon count: O(n2) worst-case

• computationally intense preprocessing stage restricts
algorithm to static scenes

14

The Z-Buffer Algorithm (mid-70’s)

• BSP trees proposed when memory was
expensive
• first 512x512 framebuffer was >$50,000!

• Ed Catmull proposed a radical new
approach called z-buffering

• the big idea:
• resolve visibility independently at each

pixel

15

The Z-Buffer Algorithm

• we know how to rasterize polygons into an
image discretized into pixels:

16

The Z-Buffer Algorithm

• what happens if multiple primitives occupy
the same pixel on the screen?
• which is allowed to paint the pixel?

17

The Z-Buffer Algorithm

• idea: retain depth after projection transform
• each vertex maintains z coordinate

• relative to eye point

• can do this with canonical viewing volumes

18

The Z-Buffer Algorithm

• augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
• at frame beginning, initialize all pixel depths

to ∞
• when rasterizing, interpolate depth (Z)

across polygon
• check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
• don’t write pixel if its Z value is more distant

than the Z value already stored there
19

Interpolating Z

• barycentric coordinates
• interpolate Z like other

planar parameters

20

Z-Buffer

• store (r,g,b,z) for each pixel
• typically 8+8+8+24 bits, can be more

for all i,j {for all i,j {
 Depth[i,j] = MAX_DEPTH Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR Image[i,j] = BACKGROUND_COLOUR
}}
for all polygons P {for all polygons P {
 for all pixels in P { for all pixels in P {
 if (Z_pixel < Depth[i,j]) { if (Z_pixel < Depth[i,j]) {
 Image[i,j] = C_pixel Image[i,j] = C_pixel
 Depth[i,j] = Z_pixel Depth[i,j] = Z_pixel
 } }
 } }
}}

21

Depth Test Precision

• reminder: projective transformation maps
eye-space z to generic z-range (NDC)

• simple example:

• thus:























⋅























−

=













































10100

00

0010

0001

1

z

y

x

baz

y

x

T

eyeeye

eye
NDC z

b
a

z

bza
z +=

+⋅
=

22

Depth Test Precision

• therefore, depth-buffer essentially stores 1/z,
rather than z!

• issue with integer depth buffers
• high precision for near objects

• low precision for far objects

--zzeyeeye

zzNDCNDC

-n-n -f-f 23

Depth Test Precision

• low precision can lead to depth fighting for far objects
• two different depths in eye space get mapped to same

depth in framebuffer

• which object “wins” depends on drawing order and scan-
conversion

• gets worse for larger ratios f:n
• rule of thumb: f:n < 1000 for 24 bit depth buffer

• with 16 bits cannot discern millimeter differences in
objects at 1 km distance

• demo:
sjbaker.org/steve/omniv/love_your_z_buffer.html

24

 Z-Buffer Algorithm Questions

• how much memory does the Z-buffer use?

• does the image rendered depend on the
drawing order?

• does the time to render the image depend on
the drawing order?

• how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

25

Z-Buffer Pros

• simple!!!

• easy to implement in hardware
• hardware support in all graphics cards today

• polygons can be processed in arbitrary order

• easily handles polygon interpenetration

• enables deferred shading
• rasterize shading parameters (e.g., surface

normal) and only shade final visible fragments

26

Z-Buffer Cons

• poor for scenes with high depth complexity
• need to render all polygons, even if

most are invisible

• shared edges are handled inconsistently
• ordering dependent

eyeeye

27

Z-Buffer Cons

• requires lots of memory
• (e.g. 1280x1024x32 bits)

• requires fast memory
• Read-Modify-Write in inner loop

• hard to simulate translucent polygons
• we throw away color of polygons behind

closest one
• works if polygons ordered back-to-front

• extra work throws away much of the speed
advantage

28

Hidden Surface Removal

• two kinds of visibility algorithms
• object space methods

• image space methods

29

Object Space Algorithms

• determine visibility on object or polygon level
• using camera coordinates

• resolution independent
• explicitly compute visible portions of polygons

• early in pipeline
• after clipping

• requires depth-sorting
• painter’s algorithm

• BSP trees
30

Image Space Algorithms

• perform visibility test for in screen coordinates
• limited to resolution of display

• Z-buffer: check every pixel independently

• performed late in rendering pipeline

31

Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatefglRotatef((thth,x,y,z),x,y,z)
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)

32

Rendering Pipeline

Geometry
Database
Geometry
Database

Model/View
Transform.
Model/View
Transform. LightingLighting Perspective

Transform.
Perspective
Transform. ClippingClipping

Scan
Conversion

Scan
Conversion

Depth
Test

Depth
Test

TexturingTexturing BlendingBlending
Frame-
buffer

Frame-
buffer

OCSOCS

object

WCSWCS
world

VCSVCS
viewing

CCSCCS

clipping

NDCSNDCS

normalized
device

SCSSCS
screen

(2D)DCSDCS
device

(3D)

(4D)

/w/w

33

Backface Culling

34

Back-Face Culling

• on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!

35

Back-Face Culling

• not rendering backfacing polygons improves
performance
• by how much?

• reduces by about half the number of polygons
to be considered for each pixel

• optimization when appropriate

36

Back-Face Culling

• most objects in scene are typically “solid”

• rigorously: orientable closed manifolds
• orientable: must have two distinct sides

• cannot self-intersect

• a sphere is orientable since has
two sides, 'inside' and 'outside'.

• a Mobius strip or a Klein bottle is
not orientable

• closed: cannot “walk” from one
side to the other

• sphere is closed manifold

• plane is not

37

Back-Face Culling

Yes No

• most objects in scene are typically “solid”

• rigorously: orientable closed manifolds
• manifold: local neighborhood of all points isomorphic to

disc

• boundary partitions space into interior & exterior

38

Manifold

• examples of manifold objects:
• sphere

• torus

• well-formed
CAD part

39

Back-Face Culling

• examples of non-manifold objects:
• a single polygon

• a terrain or height field

• polyhedron w/ missing face

• anything with cracks or holes in boundary

• one-polygon thick lampshade

40

Back-face Culling: VCS

yy

zz

first idea:first idea:
cull if cull if 0<ZN

sometimessometimes
misses polygons thatmisses polygons that
should be culledshould be culledeyeeye

41

Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>ZN
yy

zz

42

Invisible Primitives

• why might a polygon be invisible?
• polygon outside the field of view / frustum

• solved by clipping

• polygon is backfacing
• solved by backface culling

• polygon is occluded by object(s) nearer the viewpoint
• solved by hidden surface removal

