
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Clipping II, Hidden Surfaces I

Week 8, Fri Mar 9

2

Reading for This Time

• FCG Chap 12 Graphics Pipeline
• only 12.1-12.4

• FCG Chap 8 Hidden Surfaces

3

News

• Project 3 update
• Linux executable reposted

• template update
• download package again OR

• just change line 31 of src/main.cpp from
int resolution[2];
to
int resolution[] = {100,100};
OR

• implement resolution parsing

4

Review: Clipping

• analytically calculating the portions of
primitives within the viewport

5

Review: Clipping Lines To Viewport

• combining trivial accepts/rejects
• trivially accept lines with both endpoints inside all edges

of the viewport

• trivially reject lines with both endpoints outside the same
edge of the viewport

• otherwise, reduce to trivial cases by splitting into two
segments

6

Review: Cohen-Sutherland Line Clipping

• outcodes
• 4 flags encoding position of a point relative to

top, bottom, left, and right boundary

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

• OC(p1)== 0 &&
OC(p2)==0
• trivial accept

• (OC(p1) &
OC(p2))!= 0
• trivial reject

7

Clipping II

8

Polygon Clipping

• objective
• 2D: clip polygon against rectangular window

• or general convex polygons

• extensions for non-convex or general polygons

• 3D: clip polygon against parallelpiped

9

Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments

10

• what happens to a triangle during clipping?
• some possible outcomes:

• how many sides can result from a triangle?
• seven

triangle to triangle

Why Is Clipping Hard?

triangle to quad triangle to 5-gon

11

• a really tough case:

Why Is Clipping Hard?

concave polygon to multiple polygons

12

Polygon Clipping

• classes of polygons
• triangles

• convex

• concave

• holes and self-intersection

13

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

14

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

15

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

16

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

17

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

18

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

19

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

20

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

21

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

22

Sutherland-Hodgeman Algorithm

• input/output for whole algorithm
• input: list of polygon vertices in order
• output: list of clipped polygon vertices consisting of

old vertices (maybe) and new vertices (maybe)

• input/output for each step
• input: list of vertices
• output: list of vertices, possibly with changes

• basic routine
• go around polygon one vertex at a time
• decide what to do based on 4 possibilities

• is vertex inside or outside?
• is previous vertex inside or outside?

23

Clipping Against One Edge

• p[i] inside: 2 cases

outsideoutsideinsideinside insideinside outsideoutside

p[i]p[i]

p[i-1]p[i-1]

output: output: p[i]p[i]

p[i]p[i]

p[i-1]p[i-1]pp

output: output: p,p, p[i]p[i] 24

Clipping Against One Edge

• p[i] outside: 2 cases

p[i]p[i]

p[i-1]p[i-1]

output: output: pp

p[i]p[i]

p[i-1]p[i-1]

pp

output: nothingoutput: nothing

outsideoutsideinsideinside insideinside outsideoutside

25

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {

if(p[i] inside edge) {

 if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]

 else {

 p= intersect(p[i-1], p[i], edge); output p, p[i];

 }

} else { // p[i] is outside edge

if(p[i-1] inside edge) {

 p= intersect(p[i-1], p[I], edge); output p;

}

}

} 26

Sutherland-Hodgeman Example

insideinside outsideoutside

p0p0

p1p1

p2p2

p3p3 p4p4

p5p5
p7p7 p6p6

27

Sutherland-Hodgeman Discussion

• similar to Cohen/Sutherland line clipping
• inside/outside tests: outcodes
• intersection of line segment with edge:

window-edge coordinates
• clipping against individual edges independent

• great for hardware (pipelining)
• all vertices required in memory at same time

• not so good, but unavoidable
• another reason for using triangles only in

hardware rendering

28

Hidden Surface Removal

29

Occlusion

• for most interesting scenes, some polygons
overlap

• to render the correct image, we need to
determine which polygons occlude which

30

Painter’s Algorithm

• simple: render the polygons from back to
front, “painting over” previous polygons

• draw blue, then green, then orange

• will this work in the general case?
31

Painter’s Algorithm: Problems

• intersecting polygons present a problem

• even non-intersecting polygons can form a
cycle with no valid visibility order:

32

Analytic Visibility Algorithms

• early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the
fragments to a display:

33

Analytic Visibility Algorithms

• what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

• answer:
O(n2)

34

Analytic Visibility Algorithms

• so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

• we’ll talk about one:
• Binary Space Partition (BSP) Trees

35

Binary Space Partition Trees (1979)

• BSP Tree: partition space with binary tree of
planes
• idea: divide space recursively into half-spaces

by choosing splitting planes that separate
objects in scene

• preprocessing: create binary tree of planes

• runtime: correctly traversing this tree
enumerates objects from back to front

36

Creating BSP Trees: Objects

37

Creating BSP Trees: Objects

38

Creating BSP Trees: Objects

39

Creating BSP Trees: Objects

40

Creating BSP Trees: Objects

41

Splitting Objects

• no bunnies were harmed in previous
example

• but what if a splitting plane passes through
an object?
• split the object; give half to each node

Ouch

42

Traversing BSP Trees

• tree creation independent of viewpoint
• preprocessing step

• tree traversal uses viewpoint
• runtime, happens for many different viewpoints

• each plane divides world into near and far
• for given viewpoint, decide which side is near and

which is far
• check which side of plane viewpoint is on

independently for each tree vertex
• tree traversal differs depending on viewpoint!

• recursive algorithm
• recurse on far side
• draw object
• recurse on near side

43

Traversing BSP Trees

renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)

near = T->left; far = T->right;
else

near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)

renderObject(T)
 renderBSP(near);

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

44

BSP Trees : Viewpoint A

45

BSP Trees : Viewpoint A

F N

F

N

46

BSP Trees : Viewpoint A

F NF
N

FN

ν decide independently at
each tree vertex

ν not just left or right child! 47

BSP Trees : Viewpoint A

F N

F

N

NF

FN

48

BSP Trees : Viewpoint A

F N

F

N

NF

FN

49

BSP Trees : Viewpoint A

F N

FN
F

N

NF

1

1

50

BSP Trees : Viewpoint A

F N
F

N

FN

FN NF

1

2

1 2

51

BSP Trees : Viewpoint A

F N

F

N

FN

FN

N F

NF

1

2

1 2

52

BSP Trees : Viewpoint A

F N

F

N

FN

FN

N F

NF

1

2

1 2

53

BSP Trees : Viewpoint A

F N

F

N

FN

FN

N F

NF

1

2

3

1 2

3
54

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4

F
N

1 2

34
55

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

F
N

1 2

34

5

56

BSP Trees : Viewpoint A

F N

FN

FN

N F

NF

1

2

3

4 5

1 2

34

5

6

78

96

7

8

9

FN

FN

FN

57

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

F N

FNF N

N F

58

BSP Trees : Viewpoint B

N F

F

N
F

N

FN

1

34

2

F N

FNF N

N F5

6

7

891

2

3

4

5

6

7

9

8

59

BSP Tree Traversal: Polygons

• split along the plane defined by any polygon
from scene

• classify all polygons into positive or negative
half-space of the plane
• if a polygon intersects plane, split polygon into

two and classify them both

• recurse down the negative half-space

• recurse down the positive half-space

60

BSP Demo

• useful demo:
http://symbolcraft.com/graphics/bsp

61

Summary: BSP Trees

• pros:
• simple, elegant scheme

• correct version of painter’s algorithm back-to-front
rendering approach

• was very popular for video games (but getting less so)

• cons:
• slow to construct tree: O(n log n) to split, sort

• splitting increases polygon count: O(n2) worst-case

• computationally intense preprocessing stage restricts
algorithm to static scenes

