University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Clipping Il, Hidden Surfaces |

Week 8, Fri Mar 9
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for This Time

» FCG Chap 12 Graphics Pipeline
< only 12.1-12.4
* FCG Chap 8 Hidden Surfaces

News

* Project 3 update
« Linux executable reposted
- template update
« download package again OR

« just change line 31 of src/main.cpp from
int resolution[2];
to
int resolution[] = {100,100};
OR

« implement resolution parsing

Review: Clipping

« analytically calculating the portions of
primitives within the viewport

Review: Clipping Lines To Viewport

« combining trivial accepts/rejects

« trivially accept lines with both endpoints inside all edges
of the viewport

« trivially reject lines with both endpoints outside the same
edge of the viewport

- otherwise, reduce to trivial cases by splitting into two

segments
\'\1;\. j

.\

Review: Cohen-Sutherland Line Clipping

» outcodes

* 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

* OC(p1)==0 && 1010 1000 1001
0OC(p2)==0 o 3 e
* trivial accept 10| o000 | 0001
* (0C(p1) & .
OC(p2))!=0 Y=Vin
N 0110 0100 | 0101
« trivial reject o ver

Clipping Il

Polygon Clipping

* objective
= 2D: clip polygon against rectangular window

« or general convex polygons

« extensions for non-convex or general polygons
= 3D: clip polygon against parallelpiped

Polygon Clipping

* not just clipping all boundary lines
* may have to introduce new line segments

~_/ X

Why Is Clipping Hard?
« what happens to a triangle during clipping?
* some possible outcomes:

>

triangle to triangle

>

triangle to 5-gon
» how many sides can result from a triangle?
- seven

triangle to quad

Why Is Clipping Hard?

« areally tough case:

concave polygon to multiple polygons

Polygon Clipping

* classes of polygons

- triangles

+ convex

* concave

* holes and self-intersection

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

7
< <7
~7

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

/
%

4 L

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping Sutherland-Hodgeman Clipping Sutherland-Hodgeman Clipping Sutherland-Hodgeman Clipping

* basic idea: * basic idea: * basic idea: * basic idea:
« consider each edge of the viewport individually « consider each edge of the viewport individually « consider each edge of the viewport individually « consider each edge of the viewport individually
« clip the polygon against the edge equation « clip the polygon against the edge equation « clip the polygon against the edge equation « clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped - after doing all edges, the polygon is fully clipped - after doing all edges, the polygon is fully clipped - after doing all edges, the polygon is fully clipped
< ﬁ
17 18 19 20
Sutherland-Hodgeman Clipping Sutherland-Hodgeman Algorithm Clipping Against One Edge Clipping Against One Edge
* basic idea: * input/output for whole algorithm - p[i] inside: 2 cases « p[i] outside: 2 cases
« consider each edge of the viewport individually * input: list of polygon vertices in order
« clip the polygon against the edge equation . Oll:jtPUt&!iSt of clip;t))ed po(ljygon ver[t1ipes consiiting of
- after doing all edges, the polygon is fully clipped ’ old vertices (maybe) and new vertices (maybe) inside | outside inside | outside inside | outside inside | outside
* input/output for each step .)
« input: list of vertices pli-1] pli-1] plil

« output: list of vertices, possibly with changes
* basic routine

» go around polygon one vertex at a time

« decide what to do based on 4 possibilities

) o - pli] .
- is vertex inside or outside? pli] pli-1]
« is previous vertex inside or outside?
. 2 output: p[i] output: p, p[i] 2 output: p output: nothing o
Clipping Against One Edge Sutherland-Hodgeman Example Sutherland-Hodgeman Discussion
C”p:;;yii°g_T?<E:9?£f[)”(]’ edge) { « similar to Cohen/Sutherland line clipping
it p[ﬁ inside edge) { . ?nside/ou.tside tgsts: outcodes.
if(p[i-1] inside edge) output plil; // p[-1]= p[n-1] + intersection of line segment with edge:
else { window-edge coordinates
p= intersect(p[i-1], p[il, edge); output p, p[il; « clipping against individual edges independent Hidden Surface Removal
} « great for hardware (pipelining)
telse{ /'plilis outside edge - all vertices required in memory at same time
i p_['fﬂ inside edge) { _ _ * not so good, but unavoidable
p= intersect(p[i-1], p[l], edge); output p; « another reason for using triangles only in
} hardware rendering
}
) 25 26 27 28
Occlusion Painter’s Algorithm Painter’s Algorithm: Problems Analytic Visibility Algorithms
- for most interesting scenes, some polygons + simple: render the polygons from back to « intersecting polygons present a problem . ealfly ViSi)?i"tY a'Q?fi;thuCOEPUted tge Sgttgf visible
PR » . . . olygon 7fragments directly, then renaere e
overlap front, “painting over” previous polygons * even non-intersecting polygons can form a ?ragyr%ems t?, a display: y
cycle with no valid visibility order:
- to rend_er the F:orrect image, we need t_o - draw blue, then green, then orange
determine which polygons occlude which - will this work in the general case?
29 30 31 32

Analytic Visibility Algorithms

* what is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

* answer:

O(n?)

Analytic Visibility Algorithms

* so, for about a decade (late 60s to late 70s)
there was intense interest in finding efficient
algorithms for hidden surface removal

» we'll talk about one:
* Binary Space Partition (BSP) Trees

34

Binary Space Partition Trees (1979)

» BSP Tree: partition space with binary tree of
planes
« idea: divide space recursively into half-spaces
by choosing splitting planes that separate
objects in scene

* preprocessing: create binary tree of planes

= runtime: correctly traversing this tree
enumerates objects from back to front

35

Creating BSP Trees: Objects

e

<
® ﬁﬁtﬁ

Creating BSP Trees: Objects

% 4
6 ® iﬁéis\&%s

- :
e

Creating BSP Trees: Objects

Creating BSP Trees: Objects

39

Creating BSP Trees: Objects

Splitting Objects
* no bunnies were harmed in previous
example

+ but what if a splitting plane passes through
an object?
« split the object; aive half to each node

P
®-%%

Traversing BSP Trees

« tree creation independent of viewpoint
* preprocessing step
« tree traversal uses viewpoint
« runtime, happens for many different viewpoints
+ each plane divides world into near and far
- for given viewpoint, decide which side is near and
which is far

« check which side of plane viewpoint is on
independently for each tree vertex

- tree traversal differs depending on viewpoint!
« recursive algorithm

« recurse on far side

« draw object

* recurse on near side
42

Traversing BSP Trees

query: given a viewpoint, produce an ordered list of (possibly
split) objects from back to front:

renderBSP (BSPtree *T)

BSPtree *near, *far;

if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;

renderBSP (far) ;

if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

43

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

=

v decide independently at ﬁ
each tree vertex i

« not just left or right child! “*

BSP Trees : Viewpoint A

47

< < l
- - .
5 £ g oL
o o >
% 3 8
2 2 e g X
] [€ S|
S S [} o @
> > o g g
e e &)
o g . =
A o o 8 /A
o o [11] ,M Py
o o o O =
@ @ 5 €
[11] [11] o &
=2
g S
5 <
- :
5 £
w =2 5 8
c g8 ¢ 2 o
< < S = - 8 §8
£ £ >§ ¢ = g8
—_— = w
- — o > W < o @
o o o & = A
o <3 I @ g £ ®
W W b (0] Q nunleh
O [© c Qa ©o75 3 o
S S ¢ = o) 28 s >
o =R ") © =
- ~. ¢ o .|ndmmg%
0] n ©
b 2 ©c c 25 6 ca
5] S o & >0 O
o o 3 oo ex22 2
- — o [o% £ €% E =S
= = ¢ 2 9w cw g€
S —_
AW W - MuanvM.emucww
m o0 o neacN..mdd
S0 >~% %8s 0 @
R seLEFSoe
m - 2L9255
28837 g ¢
ne O P =
< < m
o~ e -~
S £ kS
o o o
<% 1<% <%
3 3 3
2 2 2
> > >
73 n 73
o o o
o o o
S S S
(= [= (=
o o o
(2] (2} (2]
o [11] o
&) @
- o g 8
5§ 8 83
‘M 2 £ Bo
< < o = S5 9
-~ - - n 5 X .tI,\W)m
£ £ £ 3 & 5 =¢€e
o o o = E &£ o @
g g g = £ 3 293
o S c c O
2 2 K] 7 5 § 23¢2
> > > @ 2 8 =584
- L. - L. 05 & 5958
" ®) > EE > ;223§
e] Q © mmh:m mpw%
2 2 e € 58 n8Ee
[= - £ Tecgz 2828
o o o S Se86 2Lcg
7] 7] 7] (7] 9552 §E8%
m [11] m ©>2> O C®E
g5 & 2 23£
- Wutum.m
w EG65 T 6w © 360
%.mcmwnﬁscm
5. - e« 8. .

