University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Advanced Rendering lll, Clipping

Week 8, Mon Mar 5
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Reading for This Time

» FCG Chap 12 Graphics Pipeline
< only 12.1-12.4

News

* Announcement from Jessica
» www.cutsforcancer.net

» P1 grades posted (by student number)
* P3, H3 out by Wednesday

Correction: Recursive Ray Tracing

RayTrace(r,scene)
obj := Firstintersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end;

Review: Ray Tracing

* issues:
* generation of rays
« intersection of rays with geometric primitives
» geometric transformations
« lighting and shading
« efficient data structures so we don’t have to
test intersection with every object

Advanced Rendering lll

Optimized Ray-Tracing

* basic algorithm simple but very expensive
 optimize by reducing:
« number of rays traced
» number of ray-object intersection calculations
* methods
» bounding volumes: boxes, spheres
« spatial subdivision
« uniform
- BSP trees
* (more on this later with collision)

Example Raytraced Images

Radiosity

* radiosity definition
- rate at which energy emitted or reflected by a surface
* radiosity methods
« capture diffuse-diffuse bouncing of light
« indirect effects difficult to handle with raytracing

Radiosity

« illumination as radiative heat transfer

energy thermometerfeye
packets

reflective objects.

« conserve light energy in a volume

« model light transport as packet flow until convergence
« solution captures diffuse-diffuse bouncing of light

* view-independent technique
» calculate solution for entire scene offline
= browse from any viewpoint in realtime

Radiosity
« divide surfaces into small patches

« loop: check for light exchange between all pairs
« form factor: orientation of one patch wrt other patch (n x n matrix)

‘scence an odu.aulectureleg/Gioballlumination/imagelcontinuous g

Better Global lllumination
« ray-tracing: great specular, approx. diffuse
« view dependent
- radiosity: great diffuse, specular ignored
« view independent, mostly-enclosed volumes
« photon mapping: superset of raytracing and radiosity
« view dependent, handles both diffuse and specular well
raytracing hoton mappin

‘graphics.ucsd.edu/~henrik/images/cbox.html

Subsurface Scattering: Translucency

« light enters and leaves at different locations
on the surface
* bounces around inside

« technical Academy Award, 2003
» Jensen, Marschner, Hanrahan

KD

e Ny
N

S

a0
E:

Subsurface Scattering: Marble

Subsurface Scattering: Milk vs. Paint

Subsurface Scattering: Skin

Subsurface Scattering: Skin

Non-Photorealistic Rendering

» simulate look of hand-drawn sketches or
paintings, using

digital models

(w:,?- 5 = {ﬁf)n"‘a/‘ [
Bl N & : .

www.red3d.com/cwr/npr/

Non-Photorealistic Shading

- cool-to-warm shading &, -1*%!

c=ke, +(1-k,)e,

standard cool-to-warm with edges/creases

http:;

Non-Photorealistic Shading

+ draw silhouettes: if (e-n,)(e-n,) <0, e=edge-eye vector

« draw creases: if (n,-n,) = threshold

standard cool-to-warm with edges/creases

http:,

Image-Based Modelling and Rendering

« store and access only pixels
* no geometry, no light simulation, ...
« input: set of images
« output: image from new viewpoint
« surprisingly large set of possible new viewpoints
« interpolation allows translation, not just rotation

Image-Based Rendering

- display time not tied to scene complexity

+ expensive rendering or real photographs
+ example: Matrix bullet-time scene

« array of many cameras allows virtual camera to "freeze time"
« convergence of graphics, vision, photography

+ computational photography

Rendering Pipeline

Database

e Perspectiv
Bionting HTransform‘.!l

——

Clipping]

- lightfield, lumigraph: translate outside convex hull of object Cllpplng
+ QuickTimeVR: camera rotates, no translation Scan N Depth) Frame-
* can point camera in or out Conversion™] Texturing Test Blending buffer
21 23 24
Next Topic: Clipping Clipping Why Clip? Line Clipping
* we've been assuming that all primitives (lines, + analytically calculating the portions of * bad idea to rasterize outside of framebuffer 2D

triangles, polygons) lie entirely within the viewport
« in general, this assumption will not hold:

o

primitives within the viewport

bounds
« also, don’t waste time scan converting pixels
outside window

« could be billions of pixels for very close
objects!

27

= determine portion of line inside an axis-aligned
rectangle (screen or window)

- 3D

« determine portion of line inside axis-aligned
parallelpiped (viewing frustum in NDC)

 simple extension to 2D algorithms

Clipping

« naive approach to clipping lines:
for each line segment
for each edge of viewport
find intersection point
pick “nearest” point
if anything is left, draw it
« what do we mean by “nearest”? /D

* how can we optimize this? C
A./

Trivial Accepts

* big optimization: trivial accept/rejects
* Q: how can we quickly determine whether a line
segment is entirely inside the viewport?
« A: test both endpoints

N

Trivial Rejects

* Q: how can we know a line is outside
viewport?

« A: if both endpoints on wrong side of same
edge, can trivially reject line

N/

31

Clipping Lines To Viewport

« combining trivial accepts/rejects
« trivially accept lines with both endpoints inside all edges
of the viewport
« trivially reject lines with both endpoints outside the same
edge of the viewport
- otherwise, reduce to trivial cases by splitting into two
segments

—~—
[\

Cohen-Sutherland Line Clipping

* outcodes
« 4 flags encoding position of a point relative to
top, bottom, left, and right boundary

1010 | 1000 | 1001
X g

- OC(p1)=0010
« OC(p2)=0000 *pl
- OC(p3)=1001 0010 0000 0001

Y= Ymin

0110 0100 0101

X=X, X=X,
‘min ‘max .

Cohen-Sutherland Line Clipping

« assign outcode to each vertex of line to test
« line segment: (p1,p2)
« trivial cases
« OC(p1)==0 && OC(p2)==0
« both points inside window, thus line segment completely visible
(trivial accept)
« (OC(p1) & OC(p2))!=0
- there is (at least) one boundary for which both points are outside
(same flag set in both outcodes)

« thus line segment completely outside window (trivial reject)

Cohen-Sutherland Line Clipping

« if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

« pick an edge that the line crosses (how?)
* intersect line with edge (how?)

« discard portion on wrong side of edge and assign
outcode to new vertex

« apply trivial accept/reject tests; repeat if necessary

35

Cohen-Sutherland Line Clipping

« if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

« pick an edge that the line crosses

« check against edges in same order each time
« for example: top, bottom, right, left

A]

Cohen-Sutherland Line Clipping

* intersect line with edge

Cohen-Sutherland Line Clipping

« discard portion on wrong side of edge and assign
outcode to new vertex

D,

c.~?

e

« apply trivial accept/reject tests and repeat if
necessary

Viewport Intersection Code

* (X4, Y1), (Xo, ¥p) intersect vertical edge at X;ig

* Yintersect = Y1 * M(Xright = X1)
* m=(yp-y1)/(Xp-X1)

* (X4, Y1), (X9, o) intersect horiz edge at ypyom

* Xintersect = X1 * (Yottom — Y1)/M
* m=(yp-y1)/(XpX4) (X2, ¥2)

Ybottom

(X1, ¥1)
39

Cohen-Sutherland Discussion

* key concepts
« use opcodes to quickly eliminate/include lines

« best algorithm when trivial accepts/rejects are
common

« must compute viewport clipping of remaining
lines
« non-trivial clipping cost
« redundant clipping of some lines
« basic idea, more efficient algorithms exist

Line Clipping in 3D

» approach
= clip against parallelpiped in NDC
« after perspective transform
» means that clipping volume always the same
* xmin=ymin= -1, xmax=ymax= 1 in OpenGL

» boundary lines become boundary planes
« but outcodes still work the same way
« additional front and back clipping plane
« zmin = -1, zmax = 1 in OpenGL

Polygon Clipping

* objective
» 2D: clip polygon against rectangular window

« or general convex polygons

« extensions for non-convex or general polygons
+ 3D: clip polygon against parallelpiped

Polygon Clipping

* not just clipping all boundary lines
* may have to introduce new line segments

~_/ X

43

Why Is Clipping Hard?
» what happens to a triangle during clipping?

» some possible outcomes:
T

[T L=

triangle to quad

triangle to triangle
» how many sides can result from a triangle?
* seven

triangle to 5-gon

Why Is Clipping Hard?

« areally tough case:

concave polygon to multiple polygons

Polygon Clipping

* classes of polygons

« triangles

+ convex

* concave

* holes and self-intersection

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

4
<7

47

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

/

4 <

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

51

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

.

Sutherland-Hodgeman Clipping

* basic idea:
« consider each edge of the viewport individually
« clip the polygon against the edge equation
« after doing all edges, the polygon is fully clipped

55

Sutherland-Hodgeman Algorithm

* input/output for whole algorithm
« input: list of polygon vertices in order

- output: list of clipped polygon vertices consisting of
old vertices (maybe) and new vertices (maybe)

* input/output for each step
« input: list of vertices
= output: list of vertices, possibly with changes
* basic routine
» go around polygon one vertex at a time
« decide what to do based on 4 possibilities
« is vertex inside or outside?
« is previous vertex inside or outside?

Clipping Against One Edge

* p[i] inside: 2 cases

inside outside inside | outside
pli-1]
pli]
output: p[i] output: p, p[i] 5

Clipping Against One Edge

* p[i] outside: 2 cases

outside
pli]

inside outside inside

pli-1]

pli-1]

output: p

output: nothing

58

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {
for(i=0;i<n;i++){
if(pli] inside edge) {
if(p[i-1] inside edge) output p[il; // p[-1]= p[n
else {
p= intersect(p[i-1], p[i], edge); output p, p[i];
}

.1]

}else { /1 pli] is outside edge

if(p[i-1] inside edge) {
p= intersect(p[i-1], p[l], edge); output p;
}

59

Sutherland-Hodgeman Example

Sutherland-Hodgeman Discussion

+ similar to Cohen/Sutherland line clipping
« inside/outside tests: outcodes
« intersection of line segment with edge:
window-edge coordinates
« clipping against individual edges independent
= great for hardware (pipelining)
= all vertices required in memory at same time
* not so good, but unavoidable

« another reason for using triangles only in
hardware rendering

