
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Advanced Rendering III, Clipping

Week 8, Mon Mar 5

2

Reading for This Time

• FCG Chap 12 Graphics Pipeline
• only 12.1-12.4

3

News

• Announcement from Jessica
• www.cutsforcancer.net

• P1 grades posted (by student number)

• P3, H3 out by Wednesday

4

Correction: Recursive Ray Tracing

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;

5

Review: Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

6

Advanced Rendering III

7

Optimized Ray-Tracing

• basic algorithm simple but very expensive

• optimize by reducing:
• number of rays traced

• number of ray-object intersection calculations

• methods
• bounding volumes: boxes, spheres

• spatial subdivision
• uniform

• BSP trees

• (more on this later with collision)

8

Example Raytraced Images

9

Radiosity

• radiosity definition
• rate at which energy emitted or reflected by a surface

• radiosity methods
• capture diffuse-diffuse bouncing of light

• indirect effects difficult to handle with raytracing

10

Radiosity

• illumination as radiative heat transfer

• conserve light energy in a volume

• model light transport as packet flow until convergence

• solution captures diffuse-diffuse bouncing of light

• view-independent technique
• calculate solution for entire scene offline

• browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

11

Radiosity

[IBM][IBM]

• divide surfaces into small patches

• loop: check for light exchange between all pairs
• form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpgescience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg
12

Better Global Illumination
• ray-tracing: great specular, approx. diffuse

• view dependent

• radiosity: great diffuse, specular ignored
• view independent, mostly-enclosed volumes

• photon mapping: superset of raytracing and radiosity
• view dependent, handles both diffuse and specular well

raytracing photon mapping

graphics.ucsd.edu/~henrik/images/cbox.html

13

Subsurface Scattering: Translucency

• light enters and leaves at different locations
on the surface
• bounces around inside

• technical Academy Award, 2003
• Jensen, Marschner, Hanrahan

14

Subsurface Scattering: Marble

15

Subsurface Scattering: Milk vs. Paint

16

Subsurface Scattering: Skin

17

Subsurface Scattering: Skin

18

Non-Photorealistic Rendering

• simulate look of hand-drawn sketches or
paintings, using digital models

www.red3d.com/cwr/npr/
19

Non-Photorealistic Shading

• cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

€

kw =
1+ n ⋅ l
2

,c = kwcw + (1− kw)cc

standard cool-to-warm with edges/creases

20

Non-Photorealistic Shading

• draw silhouettes: if , e=edge-eye vector

• draw creases: if

€

(e ⋅n0)(e ⋅n1) ≤ 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

€

(n0 ⋅n1) ≤ threshold
standard cool-to-warm with edges/creases

21

Image-Based Modelling and Rendering
• store and access only pixels

• no geometry, no light simulation, ...
• input: set of images
• output: image from new viewpoint

• surprisingly large set of possible new viewpoints
• interpolation allows translation, not just rotation

• lightfield, lumigraph: translate outside convex hull of object
• QuickTimeVR: camera rotates, no translation

• can point camera in or out

22

Image-Based Rendering

• display time not tied to scene complexity
• expensive rendering or real photographs

• example: Matrix bullet-time scene
• array of many cameras allows virtual camera to "freeze time"

• convergence of graphics, vision, photography
• computational photography

23

Clipping

24

Rendering Pipeline

Geometry
Database
Geometry
Database

Model/View
Transform.
Model/View
Transform. LightingLighting Perspective

Transform.
Perspective
Transform. ClippingClipping

Scan
Conversion

Scan
Conversion

Depth
Test

Depth
Test

TexturingTexturing BlendingBlending
Frame-
buffer

Frame-
buffer

25

Next Topic: Clipping

• we’ve been assuming that all primitives (lines,
triangles, polygons) lie entirely within the viewport

• in general, this assumption will not hold:

26

Clipping

• analytically calculating the portions of
primitives within the viewport

27

Why Clip?

• bad idea to rasterize outside of framebuffer
bounds

• also, don’t waste time scan converting pixels
outside window
• could be billions of pixels for very close

objects!

28

Line Clipping

• 2D
• determine portion of line inside an axis-aligned

rectangle (screen or window)

• 3D
• determine portion of line inside axis-aligned

parallelpiped (viewing frustum in NDC)

• simple extension to 2D algorithms

29

Clipping

• naïve approach to clipping lines:
for each line segment
 for each edge of viewport

 find intersection point
 pick “nearest” point
 if anything is left, draw it

• what do we mean by “nearest”?

• how can we optimize this?
A

B

C
D

30

Trivial Accepts

• big optimization: trivial accept/rejects
• Q: how can we quickly determine whether a line

segment is entirely inside the viewport?

• A: test both endpoints

31

Trivial Rejects

• Q: how can we know a line is outside
viewport?

• A: if both endpoints on wrong side of same
edge, can trivially reject line

32

Clipping Lines To Viewport

• combining trivial accepts/rejects
• trivially accept lines with both endpoints inside all edges

of the viewport

• trivially reject lines with both endpoints outside the same
edge of the viewport

• otherwise, reduce to trivial cases by splitting into two
segments

33

Cohen-Sutherland Line Clipping

• outcodes
• 4 flags encoding position of a point relative to

top, bottom, left, and right boundary

• OC(p1)=0010

• OC(p2)=0000

• OC(p3)=1001

x=x=xxminmin x=x=xxmaxmax

y=y=yyminmin

y=y=yymaxmax

00000000

10101010 10001000 10011001

00100010 00010001

01100110 01000100 01010101

p1p1

p2p2

p3p3

34

Cohen-Sutherland Line Clipping

• assign outcode to each vertex of line to test
• line segment: (p1,p2)

• trivial cases
• OC(p1)== 0 && OC(p2)==0

• both points inside window, thus line segment completely visible
(trivial accept)

• (OC(p1) & OC(p2))!= 0
• there is (at least) one boundary for which both points are outside

(same flag set in both outcodes)

• thus line segment completely outside window (trivial reject)

35

Cohen-Sutherland Line Clipping

• if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses (how?)

• intersect line with edge (how?)

• discard portion on wrong side of edge and assign
outcode to new vertex

• apply trivial accept/reject tests; repeat if necessary

36

Cohen-Sutherland Line Clipping

• if line cannot be trivially accepted or rejected,
subdivide so that one or both segments can be
discarded

• pick an edge that the line crosses
• check against edges in same order each time

• for example: top, bottom, right, left

A

B

D E

C

37

Cohen-Sutherland Line Clipping

• intersect line with edge

A

B

D E

C

38

• discard portion on wrong side of edge and assign
outcode to new vertex

• apply trivial accept/reject tests and repeat if
necessary

Cohen-Sutherland Line Clipping

A

B

D
C

39

Viewport Intersection Code

• (x1, y1), (x2, y2) intersect vertical edge at xright
• yintersect = y1 + m(xright – x1)

• m=(y2-y1)/(x2-x1)

• (x1, y1), (x2, y2) intersect horiz edge at ybottom
• xintersect = x1 + (ybottom – y1)/m

• m=(y2-y1)/(x2-x1)

(x2, y2)
(x1, y1) xright

(x2, y2)

(x1, y1)
ybottom

40

Cohen-Sutherland Discussion

• key concepts
• use opcodes to quickly eliminate/include lines

• best algorithm when trivial accepts/rejects are
common

• must compute viewport clipping of remaining
lines
• non-trivial clipping cost
• redundant clipping of some lines

• basic idea, more efficient algorithms exist

41

Line Clipping in 3D

• approach
• clip against parallelpiped in NDC

• after perspective transform
• means that clipping volume always the same

• xmin=ymin= -1, xmax=ymax= 1 in OpenGL

• boundary lines become boundary planes
• but outcodes still work the same way
• additional front and back clipping plane

• zmin = -1, zmax = 1 in OpenGL

42

Polygon Clipping

• objective
• 2D: clip polygon against rectangular window

• or general convex polygons

• extensions for non-convex or general polygons

• 3D: clip polygon against parallelpiped

43

Polygon Clipping

• not just clipping all boundary lines
• may have to introduce new line segments

44

• what happens to a triangle during clipping?
• some possible outcomes:

• how many sides can result from a triangle?
• seven

triangle to triangle

Why Is Clipping Hard?

triangle to quad triangle to 5-gon

45

• a really tough case:

Why Is Clipping Hard?

concave polygon to multiple polygons

46

Polygon Clipping

• classes of polygons
• triangles

• convex

• concave

• holes and self-intersection

47

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

48

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

49

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

50

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

51

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

52

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

53

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

54

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

55

Sutherland-Hodgeman Clipping

• basic idea:
• consider each edge of the viewport individually
• clip the polygon against the edge equation
• after doing all edges, the polygon is fully clipped

56

Sutherland-Hodgeman Algorithm

• input/output for whole algorithm
• input: list of polygon vertices in order
• output: list of clipped polygon vertices consisting of

old vertices (maybe) and new vertices (maybe)

• input/output for each step
• input: list of vertices
• output: list of vertices, possibly with changes

• basic routine
• go around polygon one vertex at a time
• decide what to do based on 4 possibilities

• is vertex inside or outside?
• is previous vertex inside or outside?

57

Clipping Against One Edge

• p[i] inside: 2 cases

outsideoutsideinsideinside insideinside outsideoutside

p[i]p[i]

p[i-1]p[i-1]

output: output: p[i]p[i]

p[i]p[i]

p[i-1]p[i-1]pp

output: output: p,p, p[i]p[i] 58

Clipping Against One Edge

• p[i] outside: 2 cases

p[i]p[i]

p[i-1]p[i-1]

output: output: pp

p[i]p[i]

p[i-1]p[i-1]

pp

output: nothingoutput: nothing

outsideoutsideinsideinside insideinside outsideoutside

59

Clipping Against One Edge
clipPolygonToEdge(p[n], edge) {

for(i= 0 ; i< n ; i++) {

if(p[i] inside edge) {

 if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]

 else {

 p= intersect(p[i-1], p[i], edge); output p, p[i];

 }

} else { // p[i] is outside edge

if(p[i-1] inside edge) {

 p= intersect(p[i-1], p[I], edge); output p;

}

}

} 60

Sutherland-Hodgeman Example

insideinside outsideoutside

p0p0

p1p1

p2p2

p3p3 p4p4

p5p5
p7p7 p6p6

61

Sutherland-Hodgeman Discussion

• similar to Cohen/Sutherland line clipping
• inside/outside tests: outcodes
• intersection of line segment with edge:

window-edge coordinates
• clipping against individual edges independent

• great for hardware (pipelining)
• all vertices required in memory at same time

• not so good, but unavoidable
• another reason for using triangles only in

hardware rendering

