University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2007

Tamara Munzner
Shading, Advanced Rendering

Week 7, Wed Feb 28
http://www.ugrad.cs.ubc.ca/~cs314/Vian2007

Reading for Today and Tomorrow

 FCG Chap 10 Ray Tracing
* only 10.1-10.7

* FCG Chap 25 Image-Based Rendering

News

 extra lab coverage: TAs available to answer
guestions

* Wed 2-3, 5-6 (Matt)

* Thu 11-2 (Matt)

* Thu 3:30-5:30 (Gordon)
* Fri 2-5 (Gordon)

News

* Project 2

» rolling ball mode should rotate around center
of world, not center of camera

» corrected example binary will be posted soon

News

* Homework 2 Q9 was underconstrained

» "Sketch what the resulting image would look
like with an oblique angle of 70 degrees"

» add: and a length of .7 for lines perpendicular
to the image plane

* question is now extra credit

Final Correction/Clarification: 3D Shear

[1 hyx hzx O]
hxy 1 hzy 0
hxz hyz 1 0

0 0 0 1

« general shear shear(hxy, hxz, hyx, hyz, hzx, hzy) =

« "x-shear" usually means shear along x in direction of some other axis
« correction: not shear along some axis in direction of x
« to avoid ambiguity, always say "shear along <axis> in direction of <axis>"

1 h 0 O] 1 0 A~ O
shearAlongXinDirectionOfY (h) = 0100 shearAlongXinDirectionOfZ(h) = 0 100
0 010 0010
00 0 If 000 1
1 0 0O 1 0 0 O]
shearAlongYinDirectionOfX (h) = ho1 00 shearAlongYinDirectionOfZ(h) = 0 1 h0
0010 0 01 0
0 0 0 1 0 0 0 1]
1 0 0 0 [1 0 0 O]
0100 o 0 100
shearAlongZinDirectionOfX (h) = 50 10 shearAlongZinDirectionOfY (h) = 0o h 10
0 0 01 0 0 0 I]

Correction/Review: Reflection Equations

- Blinn improvement % ht t1

n..
_ shiny]
Ispecular - ksIlight (h * n)

h=(+v)/2

» full Phong lighting model

- combine ambient, diffuse, specular components
#lights

n ..
Itotal =ambient + 211 (kd (n ¢ ll) + ks(V * ri) shiny)
i=1

» don’t forget to normalize all vectors: n,l,r,v,h .

Review: Lighting

* lighting models
» ambient
* normals don’'t matter
» Lambert/diffuse
» angle between surface normal and light
* Phong/specular
 surface normal, light, and viewpoint

Review: Shading Models

» flat shading

» compute Phong lighting once for entire
polygon
» Gouraud shading

» compute Phong lighting at the vertices and
interpolate lighting values across polygon

Shading

10

Phong Shading

* linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel

* same input as Gouraud shading
* pro: much smoother results

» con: considerably more expensive

* not the same as Phong lighting
¢« common confusion

* Phong lighting: empirical model to calculate
illumination at a point on a surface

11

Phong Shading

* linearly interpolate the vertex normals
- compute lighting equations at each pixel
* canh use specular component

#lights
Immz = kalambiem + E Ii(kd (n- li) + ks(v- ri)nshmy)
N, i=1

remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

12

Phong Shading Difficulties

computationally expensive

* per-pixel vector normalization and lighting
computation!

» floating point operations required

lighting after perspective projection

* messes up the angles between vectors

* have to keep eye-space vectors around
no direct support in pipeline hardware

* but can be simulated with texture mapping

13

Shading Artifacts: Silhouettes

» polygonal silhouettes remain

Gouraud Phong

14

Shading Models Summary

» flat shading

» compute Phong lighting once for entire
polygon
» Gouraud shading

» compute Phong lighting at the vertices and
interpolate lighting values across polygon

* Phong shading
» compute averaged vertex normals

* interpolate normals across polygon and
perform Phong lighting across polygon

15

Shutterbug: Flat Shading

16

Shutterbug: Gouraud Sh

17

Shutterbug: Phong Shading

18

Reminder: Computing Normals

* per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
» computing normal for a polygon

19

Reminder: Computing Normals

* per-vertex normals by interpolating per-facet
normals

* OpenGL supports both
» computing normal for a polygon
* three points form two vectors

20

Reminder: Computing Normals

* per-vertex normals by interpolating per-facet
normals

* OpenGL supports both

» computing normal for a polygon
* three points form two vectors

- cross: normal of plane (a-b) x (c-b) P

gives direction

- normalize to unit length!
c Cb

- which side is up? a-b

« convention: points in
counterclockwise a
order

21

Specifying Normals

* OpenGL state machine
* uses last normal specified

* if no normals specified, assumes all identical

* per-vertex normals
gINormal3f(1,1,1);
glVertex31(3.4,5);
gINormal31f(1,1,0);
glVertex3f(10,5,2);

* per-face normals
gINormal3f(1,1,1);
glVertex31(3.4,5);
glVertex3f(10,5,2);

22

Advanced Rendering

23

Global lllumination Models

 simple lighting/shading methods simulate
local illumination models

* no object-object interaction
* global illumination models

* more realism, more computation

* leaving the pipeline for these two lectures!
* approaches

* ray tracing

* radiosity

* photon mapping

» subsurface scattering

24

Ray Tracing

 simple basic algorithm
 well-suited for software rendering

* flexible, easy to incorporate new effects
e Turner Whitted, 1990

25

Simple Ray Tracing >z

* view dependent method

* cast a ray from viewer's
eye through each pixel

« compute intersection of
ray with first object in
scene

» cast ray from
iIntersection point on
object to light sources

~\pixel positions

projection
reference
point

on projection
plane

26

Reflection

* mirror effects
* perfect specular reflection

Refraction

* happens at interface
between transparent object

and surrounding medium
* e.g. glass/air boundary

» Snell’'s Law
* ¢, sinf, =c,sinb,
* light ray bends based on
refractive indices c,, C,

28

Recursive Ray Tracing >

* ray tracing can handle
* reflection (chrome/mirror)

/|\

* refraction (glass)

 shadows

 spawn secondary rays

 reflection, refraction

« if another object is hit,
recurse to find its color

* shadow projection

» cast ray from intersection ref_ertence
point to light source, check "
if intersects another object

~\pixel positions
on projection
plane

29

Basic Algorithm

for every pixel p; {
generate ray r from camera position through pixel p;
for every object o in scene {
if (rintersects 0)

compute lighting at intersection point, using local
normal and material properties; store result in p;

else
p;= background color

30

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := Firstintersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,obj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);

end;

31

Algorithm Termination Criteria

* termination criteria
* no intersection
* reach maximal depth
* number of bounces

» contribution of secondary ray attenuated
below threshold

- each reflection/refraction attenuates ray

32

Ray Tracing Algorithm

Light
Source
\\\llé
N

Image Plane

Shadow
Rays

Reflected
Ray

Refracted
Ray

33

Ray-Tracing Terminology

 terminology:
* primary ray: ray starting at camera
* shadow ray
» reflected/refracted ray

* ray tree: all rays directly or indirectly spawned
off by a single primary ray

* note:

* need to limit maximum depth of ray tree to
ensure termination of ray-tracing process!

34

Ray Tracing

* Issues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
* lighting and shading

« efficient data structures so we don’t have to
test intersection with every object

35

Ray - Object Intersections

* inner loop of ray-tracing

* must be extremely efficient
* solve a set of equations

* ray-sphere

* ray-triangle

* ray-polygon

36

Ray - Sphere Intersection

cray: x()=p, +v.it, O)=p, +vt, z2(t)=p, + V.1
./"'

- unit sphere: x’+y’ +z° =1 p

* quadratic equation In t:

0=(p, +v.1)° +(p, +vyt)2 +(p,+v.1)" -1

= tz(vi +vy2 +vf)+2t(vax +p,v, +p.v.)

+(p; +p, +p.)-1

37

Ray Generation

* camera coordinate system
» origin: C (camera position)
* viewing direction: v
* Up vector: u
» X direction: x=v x u

* note:

* corresponds to viewing
transformation in rendering pipeline

* like gluLookAt

38

Ray Generation

» other parameters:
- distance of camera from image plane: d | | ——__

e
ot
.
.t
(e
ot
X

* image resolution (in pixels): w, A
- left, right, top, bottom boundaries
In image plane: [, r, ¢, b

* then:

- lower left corner ofimage: O=C+d-v+/[-X+b-u

* pixel at position i, j (i=0..w-1, j=0..h-1):
r—1 . t=b

. X — J o o u

w-—1 h-1

=0+i"Ax-X-j-Ay-y

F.=0+i-

39

Ray Generation

* ray in 3D space:

R, @)=C+t-(F,-C)=C+t-v,,

where = (...

40

Ray Tracing

* ISsues:
* generation of rays
* intersection of rays with geometric primitives
» geometric transformations
* lighting and shading

 efficient data structures so we don’t have to
test intersection with every object

41

Ray Intersections

* task:

 given an object o, find ray parameter ¢, such
that R, () is a point on the object
* such a value for t may not exist

* intersection test depends on geometric
primitive

42

Ray Intersections: Spheres

* spheres at origin
* implicit function

S, y,2):x +y +z" =r"

* ray equation

R, (@)=C+tv, =

+1-

(c +t-V_)

C‘y +f'Vy

\cZ +t°v2/

43

Ray Intersections: Spheres

* {o determine intersection:
* Insert ray R, () into S(x,y,z):
(c.+1v.) + (c, +t°vy)2 +(c,+tv,) =r’

» solve for ¢ (find roots)
* simple quadratic equation

44

Ray Intersections: Other Primitives

 implicit functions
» spheres at arbitrary positions
« same thing
 conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)
« same thing (all are quadratic functions!)
* polygons
« first intersect ray with plane
* linear implicit function
 then test whether point is inside or outside of polygon (2D test)
 for convex polygons

- suffices to test whether point in on the correct side of every
boundary edge

» similar to computation of outcodes in line clipping (upcoming)

45

Credits

* some of raytracing material from Wolfgang
Heidrich

* http://www.ugrad.cs.ubc.ca/~cs314/WHmay2006/

46

