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Shading, Advanced Rendering
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Reading for Today and Tomorrow

• FCG Chap 10 Ray Tracing
• only 10.1-10.7

• FCG Chap 25 Image-Based Rendering

3

News

• extra lab coverage: TAs available to answer
questions
• Wed 2-3, 5-6 (Matt)

• Thu 11-2 (Matt)

• Thu 3:30-5:30 (Gordon)

• Fri 2-5 (Gordon)
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News

• Project 2
• rolling ball mode should rotate around center

of world, not center of camera
• corrected example binary will be posted soon
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News

• Homework 2 Q9 was underconstrained
• "Sketch what the resulting image would look

like with an oblique angle of 70 degrees"

• add: and a length of .7 for lines perpendicular
to the image plane

• question is now extra credit
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Final Correction/Clarification: 3D Shear

• general shear

• "x-shear" usually means shear along x in direction of some other axis
• correction: not shear along some axis in direction of x
• to avoid ambiguity, always say "shear along <axis> in direction of <axis>"
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Correction/Review: Reflection Equations

• Blinn improvement

• full Phong lighting model
• combine ambient, diffuse, specular components

• don’t forget to normalize all vectors: n,l,r,v,h
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Review: Lighting

• lighting models
• ambient

• normals don’t matter

• Lambert/diffuse
• angle between surface normal and light

• Phong/specular
• surface normal, light, and viewpoint
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Review: Shading Models

• flat shading
• compute Phong lighting once for entire

polygon
• Gouraud shading

• compute Phong lighting at the vertices and
interpolate lighting values across polygon
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Shading
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Phong Shading

• linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel
• same input as Gouraud shading
• pro: much smoother results
• con: considerably more expensive

• not the same as Phong lighting
•  common confusion
•  Phong lighting: empirical model to calculate

illumination at a point on a surface
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Phong Shading

• linearly interpolate the vertex normals
• compute lighting equations at each pixel

• can use specular component
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Phong Shading Difficulties

•  computationally expensive
• per-pixel vector normalization and lighting

computation!

• floating point operations required

•  lighting after perspective projection
• messes up the angles between vectors

• have to keep eye-space vectors around

•  no direct support in pipeline hardware
• but can be simulated with texture mapping
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Gouraud              Phong

Shading Artifacts: Silhouettes

• polygonal silhouettes remain
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Shading Models Summary

• flat shading
• compute Phong lighting once for entire

polygon
• Gouraud shading

• compute Phong lighting at the vertices and
interpolate lighting values across polygon

• Phong shading
• compute averaged vertex normals
• interpolate normals across polygon and

perform Phong lighting across polygon
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Shutterbug: Flat Shading
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Shutterbug: Gouraud Shading
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Shutterbug: Phong Shading
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Reminder: Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
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Reminder: Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors
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Reminder: Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors
• cross: normal of plane

gives direction
• normalize to unit length!

• which side is up?
• convention: points in

counterclockwise
order
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Specifying Normals

• OpenGL state machine
• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);
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Advanced Rendering
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Global Illumination Models

• simple lighting/shading methods simulate
local illumination models
• no object-object interaction

• global illumination models
• more realism, more computation
• leaving the pipeline for these two lectures!

• approaches
• ray tracing
• radiosity
• photon mapping
• subsurface scattering
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Ray Tracing

• simple basic algorithm

• well-suited for software rendering

• flexible, easy to incorporate new effects
• Turner Whitted, 1990
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Simple Ray Tracing

• view dependent method
• cast a ray from viewer’s

eye through each pixel

• compute intersection of
ray with first object in
scene

• cast ray from
intersection point on
object to light sources

projection
reference
point

pixel positions
on projection
plane
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Reflection

• mirror effects
• perfect specular reflection
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Refraction

• happens at interface
between transparent object
and surrounding medium
• e.g. glass/air boundary

• Snell’s Law
•

• light ray bends based on
refractive indices c1, c2
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Recursive Ray Tracing
• ray tracing can handle

• reflection (chrome/mirror)
• refraction (glass)
• shadows

• spawn secondary rays
• reflection, refraction

• if another object is hit,
recurse to find its color

• shadow
• cast ray from intersection

point to light source, check
if intersects another object

projection
reference
point

pixel positions
on projection
plane
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Basic Algorithm

for every pixel pi {

generate ray r from camera position through pixel pi
for every object o in scene {

if ( r intersects o )

   compute lighting at intersection point, using local
normal and material properties; store result in pi

else

    pi= background color

}

}
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Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj)  return BackgroundColor;
else begin
    if ( Reflect(obj) ) then
       reflect_color := RayTrace(ReflectRay(r,obj));
    else 
       reflect_color := Black;
   if ( Transparent(obj) ) then
       refract_color := RayTrace(RefractRay(r,obj));
    else 
       refract_color := Black;
   return Shade(reflect_color,refract_color,obj);
end;
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Algorithm Termination Criteria

• termination criteria
• no intersection

• reach maximal depth
• number of bounces

• contribution of secondary ray attenuated
below threshold
• each reflection/refraction attenuates ray
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Ray Tracing Algorithm

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

Shadow
Rays
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Ray-Tracing Terminology

• terminology:
• primary ray: ray starting at camera

• shadow ray

• reflected/refracted ray

• ray tree: all rays directly or indirectly spawned
off by a single primary ray

• note:
• need to limit maximum depth of ray tree to

ensure termination of ray-tracing process!
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Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object
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Ray - Object Intersections

• inner loop of ray-tracing
• must be extremely efficient

• solve a set of equations
• ray-sphere

• ray-triangle

• ray-polygon
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Ray - Sphere Intersection

• ray:

• unit sphere:

• quadratic equation in t:
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Ray Generation

• camera coordinate system
• origin: C (camera position)

• viewing direction: v

• up vector: u
• x direction: x= v × u

• note:
• corresponds to viewing

transformation in rendering pipeline

• like gluLookAt
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Ray Generation

• other parameters:
• distance of camera from image plane: d

• image resolution (in pixels): w, h

• left, right, top, bottom boundaries
in image plane: l, r, t, b

• then:
• lower left corner of image:

• pixel at position i, j (i=0..w-1, j=0..h-1):
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Ray Generation

• ray in 3D space:

where t= 0…∞
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Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object
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Ray Intersections

• task:
• given an object o, find ray parameter t, such

that Ri,j(t) is a point on the object
• such a value for t may not exist

• intersection test depends on geometric
primitive

43

Ray Intersections: Spheres

• spheres at origin
• implicit function

• ray equation
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Ray Intersections: Spheres

• to determine intersection:
• insert ray Ri,j(t) into S(x,y,z):

• solve for t (find roots)
• simple quadratic equation
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Ray Intersections: Other Primitives

• implicit functions
• spheres at arbitrary positions

• same thing

• conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)

• same thing (all are quadratic functions!)

• polygons
• first intersect ray with plane

• linear implicit function

• then test whether point is inside or outside of polygon (2D test)
• for convex polygons

• suffices to test whether point in on the correct side of every
boundary edge

• similar to computation of outcodes in line clipping (upcoming)
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Credits

• some of raytracing material from Wolfgang
Heidrich

• http://www.ugrad.cs.ubc.ca/~cs314/WHmay2006/


