
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2007

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007

Shading, Advanced Rendering

Week 7, Wed Feb 28

2

Reading for Today and Tomorrow

• FCG Chap 10 Ray Tracing
• only 10.1-10.7

• FCG Chap 25 Image-Based Rendering

3

News

• extra lab coverage: TAs available to answer
questions
• Wed 2-3, 5-6 (Matt)

• Thu 11-2 (Matt)

• Thu 3:30-5:30 (Gordon)

• Fri 2-5 (Gordon)

4

News

• Project 2
• rolling ball mode should rotate around center

of world, not center of camera
• corrected example binary will be posted soon

5

News

• Homework 2 Q9 was underconstrained
• "Sketch what the resulting image would look

like with an oblique angle of 70 degrees"

• add: and a length of .7 for lines perpendicular
to the image plane

• question is now extra credit

6

Final Correction/Clarification: 3D Shear

• general shear

• "x-shear" usually means shear along x in direction of some other axis
• correction: not shear along some axis in direction of x
• to avoid ambiguity, always say "shear along <axis> in direction of <axis>"



















=

1000

01

01

01

),,,,,(
hyzhxz

hzyhxy

hzxhyx

hzyhzxhyzhyxhxzhxyshear

€

shearAlongYinDirectionOfX(h) =

1 0 0 0
h 1 0 0
0 0 1 0
0 0 0 1



















€

shearAlongYinDirectionOfZ(h) =

1 0 0 0
0 1 h 0
0 0 1 0
0 0 0 1



















€

shearAlongXinDirectionOfY(h) =

1 h 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















€

shearAlongXinDirectionOfZ(h) =

1 0 h 0
0 1 0 0
0 0 1 0
0 0 0 1



















€

shearAlongZinDirectionOfX(h) =

1 0 0 0
0 1 0 0
h 0 1 0
0 0 0 1



















€

shearAlongZinDirectionOfY(h) =

1 0 0 0
0 1 0 0
0 h 1 0
0 0 0 1



















7

Correction/Review: Reflection Equations

• Blinn improvement

• full Phong lighting model
• combine ambient, diffuse, specular components

• don’t forget to normalize all vectors: n,l,r,v,h

ll

nn
vvhh

€

Itotal = kaIambient + Ii (
i=1

lights

∑ kd (n• li) + ks(v•ri)
nshiny)

€

Ispecular = ksIlight (h•n)
nshiny

h = (l + v) /2

8

Review: Lighting

• lighting models
• ambient

• normals don’t matter

• Lambert/diffuse
• angle between surface normal and light

• Phong/specular
• surface normal, light, and viewpoint

9

Review: Shading Models

• flat shading
• compute Phong lighting once for entire

polygon
• Gouraud shading

• compute Phong lighting at the vertices and
interpolate lighting values across polygon

10

Shading

11

Phong Shading

• linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel
• same input as Gouraud shading
• pro: much smoother results
• con: considerably more expensive

• not the same as Phong lighting
• common confusion
• Phong lighting: empirical model to calculate

illumination at a point on a surface

12

Phong Shading

• linearly interpolate the vertex normals
• compute lighting equations at each pixel

• can use specular component

N1

N2

N3

N4

€

Itotal = kaIambient + Ii kd n ⋅ li() + ks v ⋅ ri()nshiny()
i=1

lights

∑
remember: normals used in
diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

13

Phong Shading Difficulties

• computationally expensive
• per-pixel vector normalization and lighting

computation!

• floating point operations required

• lighting after perspective projection
• messes up the angles between vectors

• have to keep eye-space vectors around

• no direct support in pipeline hardware
• but can be simulated with texture mapping

14

Gouraud Phong

Shading Artifacts: Silhouettes

• polygonal silhouettes remain

15

Shading Models Summary

• flat shading
• compute Phong lighting once for entire

polygon
• Gouraud shading

• compute Phong lighting at the vertices and
interpolate lighting values across polygon

• Phong shading
• compute averaged vertex normals
• interpolate normals across polygon and

perform Phong lighting across polygon

16

Shutterbug: Flat Shading

17

Shutterbug: Gouraud Shading

18

Shutterbug: Phong Shading

19

Reminder: Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon

c

b

a

20

Reminder: Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors

c

b

a

c-b

a-b

21

Reminder: Computing Normals

• per-vertex normals by interpolating per-facet
normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors
• cross: normal of plane

gives direction
• normalize to unit length!

• which side is up?
• convention: points in

counterclockwise
order

c

b

a

c-b

a-b

(a-b) x (c-b)

22

Specifying Normals

• OpenGL state machine
• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

23

Advanced Rendering

24

Global Illumination Models

• simple lighting/shading methods simulate
local illumination models
• no object-object interaction

• global illumination models
• more realism, more computation
• leaving the pipeline for these two lectures!

• approaches
• ray tracing
• radiosity
• photon mapping
• subsurface scattering

25

Ray Tracing

• simple basic algorithm

• well-suited for software rendering

• flexible, easy to incorporate new effects
• Turner Whitted, 1990

26

Simple Ray Tracing

• view dependent method
• cast a ray from viewer’s

eye through each pixel

• compute intersection of
ray with first object in
scene

• cast ray from
intersection point on
object to light sources

projection
reference
point

pixel positions
on projection
plane

27

Reflection

• mirror effects
• perfect specular reflection

n

θ θ

28

Refraction

• happens at interface
between transparent object
and surrounding medium
• e.g. glass/air boundary

• Snell’s Law
•

• light ray bends based on
refractive indices c1, c2

2211 sinsin θθ cc =

n

θ 1

θ 2

d

t

29

Recursive Ray Tracing
• ray tracing can handle

• reflection (chrome/mirror)
• refraction (glass)
• shadows

• spawn secondary rays
• reflection, refraction

• if another object is hit,
recurse to find its color

• shadow
• cast ray from intersection

point to light source, check
if intersects another object

projection
reference
point

pixel positions
on projection
plane

30

Basic Algorithm

for every pixel pi {

generate ray r from camera position through pixel pi
for every object o in scene {

if (r intersects o)

 compute lighting at intersection point, using local
normal and material properties; store result in pi

else

 pi= background color

}

}

31

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;

32

Algorithm Termination Criteria

• termination criteria
• no intersection

• reach maximal depth
• number of bounces

• contribution of secondary ray attenuated
below threshold
• each reflection/refraction attenuates ray

33

Ray Tracing Algorithm

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

Shadow
Rays

34

Ray-Tracing Terminology

• terminology:
• primary ray: ray starting at camera

• shadow ray

• reflected/refracted ray

• ray tree: all rays directly or indirectly spawned
off by a single primary ray

• note:
• need to limit maximum depth of ray tree to

ensure termination of ray-tracing process!

35

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

36

Ray - Object Intersections

• inner loop of ray-tracing
• must be extremely efficient

• solve a set of equations
• ray-sphere

• ray-triangle

• ray-polygon

37

Ray - Sphere Intersection

• ray:

• unit sphere:

• quadratic equation in t:

x t p v t y t p v t z t p v tx x y y z z() , () , ()= + = + = +

p

v

x y z2 2 2 1+ + =

0 1

2

1

2 2 2

2 2 2 2

2 2 2

= + + + + + −

= + + + + +

+ + + −

() () ()

() ()

()

p v t p v t p v t

t v v v t p v p v p v

p p p

x x y y z z

x y z x x y y z z

x y z

38

Ray Generation

• camera coordinate system
• origin: C (camera position)

• viewing direction: v

• up vector: u
• x direction: x= v × u

• note:
• corresponds to viewing

transformation in rendering pipeline

• like gluLookAt

uu

vv

xxCC

39

Ray Generation

• other parameters:
• distance of camera from image plane: d

• image resolution (in pixels): w, h

• left, right, top, bottom boundaries
in image plane: l, r, t, b

• then:
• lower left corner of image:

• pixel at position i, j (i=0..w-1, j=0..h-1):

uxv ⋅+⋅+⋅+= bldCO

yx

ux

⋅Δ⋅−⋅Δ⋅+=

⋅
−

−
⋅−⋅

−

−
⋅+=

yjxiO
h

bt
j

w

lr
iOP ji 11,

uu

vv

xxCC

40

Ray Generation

• ray in 3D space:

where t= 0…∞

jijiji tCCPtCt ,,,)()(R v⋅+=−⋅+=

41

Ray Tracing

• issues:
• generation of rays

• intersection of rays with geometric primitives

• geometric transformations

• lighting and shading

• efficient data structures so we don’t have to
test intersection with every object

42

Ray Intersections

• task:
• given an object o, find ray parameter t, such

that Ri,j(t) is a point on the object
• such a value for t may not exist

• intersection test depends on geometric
primitive

43

Ray Intersections: Spheres

• spheres at origin
• implicit function

• ray equation

2222:),,(rzyxzyxS =++

















⋅+

⋅+

⋅+

=
















⋅+
















=⋅+=

zz

yy

xx

z

y

x

z

y

x

jiji

vtc

vtc

vtc

v

v

v

t

c

c

c

tCt ,,)(R v

44

Ray Intersections: Spheres

• to determine intersection:
• insert ray Ri,j(t) into S(x,y,z):

• solve for t (find roots)
• simple quadratic equation

2222)()()(rvtcvtcvtc zzyyxx =⋅++⋅++⋅+

45

Ray Intersections: Other Primitives

• implicit functions
• spheres at arbitrary positions

• same thing

• conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)

• same thing (all are quadratic functions!)

• polygons
• first intersect ray with plane

• linear implicit function

• then test whether point is inside or outside of polygon (2D test)
• for convex polygons

• suffices to test whether point in on the correct side of every
boundary edge

• similar to computation of outcodes in line clipping (upcoming)

46

Credits

• some of raytracing material from Wolfgang
Heidrich

• http://www.ugrad.cs.ubc.ca/~cs314/WHmay2006/

